[mmaimcal] some more high z CO rantings

Bryan Butler bbutler at aoc.nrao.edu
Fri Feb 19 15:13:01 EST 1999



for your enjoyment,

here are my calculations for CO detectability at high redshift.
they are more pessimistic than lorne avery's numbers.

take:

                nu_obs^2 (1+z)^3
  Sco = 3.08e-8 ---------------- L'co
                    dv dL^2

and calculate it for different lines, at different redshifts, given an 
excitation model.

take L'co = 5e8 for the 1-0 line
  this is slightly higher than the solomon & rivolo number, but close 
  to the 1/10th 10214 number (intrinsic - not lensed), and also matches
  pretty well with COBE results, i think.

take dv = 300 km/s

take Ho = 75 km/s/Mpc

take q0 = 0.5

now, what to use for the relative line radiation temperatures?  harvey 
has done a careful calculation, and gets the following:

(a)                               T_B
z  1-0     2-1     3-2     4-3     5-4     6-5     7-6
0 5.910   4.564   2.423   0.470   0.094   0.199   0.030
1 4.401   3.839   2.408   0.633   0.087   0.100   0.027
2 3.444   3.159   2.254   0.826   0.118   0.050   0.012
3 2.906   2.716   2.099   0.978   0.203   0.048   0.014
4 2.583   2.431   1.966   1.072   0.306   0.063   0.020
5 2.448   2.316   1.921   1.165   0.415   0.096   0.029
 
(b)
z  1-0     2-1     3-2     4-3     5-4     6-5     7-6      8-7
0 16.753  15.398  10.254   4.677   1.309   0.452   0.076   0.010
1 14.965  14.522   9.980   4.694   1.342   0.443   0.079   0.010
2 13.403  13.314   9.385   4.633   1.406   0.409   0.077   0.011
3 11.929  12.055   8.652   4.479   1.477   0.410   0.076   0.011
4 10.579  10.828   7.889   4.261   1.535   0.439   0.086   0.013
5  9.361   9.684   7.152   4.011   1.570   0.480   0.104   0.016
 
(c)
z  1-0     2-1     3-2     4-3     5-4     6-5     7-6      8-7
0 26.655  35.218  33.268  30.913  28.593  26.216  23.414  18.780
1 25.018  33.799  32.524  30.579  28.468  26.189  23.431  18.821
2 23.340  31.879  31.049  29.604  27.890  25.904  23.345  18.901
3 21.787  29.907  29.382  28.293  26.936  25.280  23.015  18.889
4 20.321  28.040  27.685  26.860  25.773  24.409  22.431  18.710
5 18.925  26.245  26.032  25.378  24.498  23.373  21.649  18.350


where (a) is a typical cold cloud (like what most of the MW emission
comes from), (b) is a weak PDR, and (c) is a strong PDR.  now, assume
that some fraction of the emission comes from the cold material
(call it fcold), and some fraction from the strong PDR's (ignore the
weak PDR's) (this fraction is obviously 1-fcold).  then, calculate the 
luminosity for a given transition and redshift as:

   L'co = Lco(1-0) * fCO

   fCO = fCO'(transition,z) / fCO'(1-0,0)

   fCO'(transition,z) = fcold * fCO'cold(transition,z) 
                        + (1-fcold) * fCO'hot(transition,z)

where fCO'cold and fCO'hot are interpolated from harvey's calculated
numbers.  then, choosing fcold, you can simply calculate the expected 
flux density as a function of transition and z.  for fcold = 0.9, which
might be a good number for the milky way, this comes out as:

     z=.2       1       2       3       4       5
1-0   1.621   0.201   0.122   0.102   0.095   0.094
2-1   0.175   0.024   0.015   0.013   0.012   0.012
3-2   0.290   0.042   0.029   0.026   0.025   0.025
4-3   0.332   0.050   0.037   0.035   0.035   0.036
5-4   0.431   0.063   0.045   0.043   0.043   0.045
6-5   0.587   0.084   0.059   0.055   0.055   0.055
7-6   0.680   0.100   0.072   0.067   0.067   0.068
8-7   0.704   0.104   0.075   0.072   0.073   0.075
 
for fcold = 0.0, and L'co = 5e9 (maybe a more typical ULIRG?), you get:

     z=.2       1       2       3       4       5
1-0  16.646   2.333   1.568   1.394   1.330   1.297
2-1   2.454   0.350   0.238   0.213   0.204   0.200
3-2   5.235   0.758   0.521   0.470   0.453   0.446
4-3   8.666   1.267   0.884   0.805   0.781   0.773
5-4  12.540   1.843   1.301   1.197   1.171   1.166
6-5  16.565   2.441   1.739   1.617   1.597   1.601
7-6  20.141   2.972   2.133   2.004   1.997   2.018
8-7  21.102   3.118   2.255   2.147   2.175   2.234


now, combine this with the best estimates for the noise (via the 
technique that i described in my previous email on this), and you get
the following tables of max detectable z for the antenna size/number
combinations listed (the noise here is calculated for a 50 km/s
channel and 4 hour integration, and a 5-sigma detection is required):


******************** old MMA default ********************

 
36 10m antennas

 trans      max detectable z     nu  
  1-0            0.2950        89.013
  2-1            0.5800       145.910
  3-2            0.6900       204.613
  4-3            0.6900       272.805
  5-4            0.4400       400.186
  6-5            0.1000       628.612
  7-6            0.2150       663.911
  8-7            0.1300       815.752


******************** MMA/LSA 10m ************************
 
 
64 10m antennas
 
 trans      max detectable z     nu 
  1-0            0.3900        82.929
  2-1            0.7850       129.153
  3-2            0.8050       191.577
  4-3            1.0700       222.725
  5-4            1.1150       272.467
  6-5            1.0150       343.163
  7-6            0.2550       642.750
  8-7            0.1450       805.065


******************** MMA/LSA 12m ************************
 
 
48 12m antennas
 
 trans      max detectable z     nu  
  1-0            0.4050        82.044
  2-1            0.8050       127.722
  3-2            0.8050       191.577
  4-3            1.1250       216.960
  5-4            1.1900       263.136
  6-5            1.0500       337.304
  7-6            0.2600       640.200
  8-7            0.1450       805.065


*********** with japanese ($600M total)? 10m ************
 
 
100 10m antennas

 trans      max detectable z     nu  
  1-0            0.4800        77.886
  2-1            0.8650       123.613
  3-2            1.4300       142.303
  4-3            1.3300       197.872
  5-4            1.6050       221.216
  6-5            1.8300       244.337
  7-6            1.9150       276.724
  8-7            0.3850       665.559


*********** with japanese ($600M total)? 12m ************
 
 
75 12m antennas
 
 trans      max detectable z     nu 
  1-0            0.4900        77.363
  2-1            0.8650       123.613
  3-2            1.5000       138.318
  4-3            1.3550       195.771
  5-4            1.6900       214.226
  6-5            1.9550       234.001
  7-6            2.0850       261.475
  8-7            0.3900       663.165


************* pipedream (gives 10000 m^2)? **************
 
 
60 15m antennas

 trans      max detectable z     nu  
  1-0            0.5350        75.095
  2-1            1.2500       102.461
  3-2            1.6700       129.512
  4-3            1.8750       160.362
  5-4            1.8850       199.746
  6-5            2.2950       209.855
  7-6            2.5650       226.270
  8-7            2.4500       267.188



and, as a contrast, a possible ULIRG (Lco = 5e9, fcold=0):

48 12m antennas
 
 trans      max detectable z     nu  
  1-0            0.7050        67.608
  2-1            2.4150        67.507
  3-2            4.0450        68.542
  4-3            >5.000        <76.84
  5-4            >5.000        <96.05
  6-5            >5.000       <115.25
  7-6            >5.000       <134.44
  8-7            >5.000       <153.63



so, can we make a general scaling with how the maximum z (zmax) relates
to the collecting area of the array (Aarray)?  the following were 
calculated for increasing numbers of antennas:

K = Nant*D^2/(No*D^2)  zmax   K/zmax
---------------------  ----   ------
         1             .575    1.74 
        1.5            .730    2.05 
         2             .910    2.20 
        2.5            1.12    2.23 
         3             1.43    2.10 
         4             1.98    2.02 
         6             2.85    2.11 
         8             3.53    2.27 

it's roughly linear (scaling between collecting area and max z), with
a mean value of about 2.1.  this was done with No = 40, and D = 8m,
so the scaling looks something like:

          Aarray
  zmax ~ --------
           4200

if you change the "detection" requirements to: 75 km/s channels, 
6 hour integrations, and 4-sigma detections, then this scaling becomes:

           Aarray
  zmax' ~ --------
            2200


remember that this is only for detection of a single line.  if we
require that 3 lines must be available for detection, then the revised
requirements are:

          Aarray
  zmax ~ --------
           5000


           Aarray
  zmax' ~ --------
            2700


note that i've only gone up to the 8-7 transition, and the result may
be modified slightly by the ability to detect the higher transitions
at higher z, but i think it won't change by much.  

better weather should improve things.  remember that all of these 
numbers were calculated with "typical" opacities.  at night in winter, 
it should get better, e.g...


	-bryan





More information about the mmaimcal mailing list