<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    One comment below..<br>
    <br>
    Karl<br>
    <br>
    <div class="moz-cite-prefix">On 5/20/2013 12:48 PM, Brian Jeffs
      wrote:<br>
    </div>
    <blockquote cite="mid:545CC6E4-33CA-4FEB-B9F1-1846387521EB@byu.edu"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=ISO-8859-1">
      Comments below.
      <div><br>
      </div>
      <div>Brian</div>
      <div><br>
        <div><br>
          <div>
            <div>On May 20, 2013, at 10:28 AM, Karl Warnick wrote:</div>
            <br class="Apple-interchange-newline">
            <blockquote type="cite">
              <div text="#000000" bgcolor="#FFFFFF">I agree that
                correlations are important. Correlated outputs will
                probably be the default mode for most PAF observations,
                and real time beams would only be used when phase
                information is important, such as for pulsar surveys
                (can pulsar searches be done with fine grained,
                narrowband correlations?) </div>
            </blockquote>
            <blockquote type="cite">
              <div text="#000000" bgcolor="#FFFFFF"><br>
                I'm not sure whether the bandwidth issue is the real
                driver. Real time beams also have to be formed in
                subbands and then either processed for pulsar surveys or
                integrated for power spectra.
              </div>
            </blockquote>
            <blockquote type="cite">
              <div text="#000000" bgcolor="#FFFFFF">I don't think
                bandwidth is really what drives the difference between a
                B engine and an X engine. It's true that if one only
                forms a few PAF beams, then with a given disk storage
                data rate one could store the beam outputs over finer
                frequency subbands than correlations, but if fully
                sampled beams are formed, the data rate wouldn't be very
                different between beam outputs and correlations with the
                same integration time and frequency resolution. Am I
                missing something?<br>
              </div>
            </blockquote>
            <div><br>
            </div>
            <div>For the same integration time and frequency resolution,
              roughly the same number of beams as PAF elements (fully
              sampled beams and Nyquist array sampling), ignoring the N
              log N complexity growth of an FFT,  ignoring processor
              architecture constraints, and if you don't need time
              series data for downstream processing, then there is no
              relative advantage between an integrating B engine and an
              X engine as to data rate.  There are however some very
              real practical limitations.</div>
            <div><br>
            </div>
            <div>If you have an ASKAP PAF you have many more elements
              than beams, so a B engine is more efficient.  With our
              PAF, which has about the same number of beams as elements,
              the calculus changes.</div>
            <div><br>
            </div>
            <div><u>All frequency channelization must be performed
                before the correlations (X engine) stage</u>, so if you
              need fine-grained frequency resolution you need a huge FFT
              to handle the 800 Msamp/s target sample rate of our back
              end.  We don't have a processor architecture that can do
              that FFT size (due to N log N growth).  You must do coarse
              FFTs first, then either real-time beamform or correlate.
               If you correlate (e.g. and then beamform) you can never
              get to the fine frequency resolution.  If you real-time
              beamform, you can follow with another FFT stage to get
              fine frequency channels.  You could then correlate, or
              integrate squared spectra, or send to pulsar processing as
              suites the application.</div>
          </div>
        </div>
      </div>
    </blockquote>
    If we were correlating outputs of an N channel PAF over the full
    bandwidth, wouldn't the cost of a fine FFT, while large, be
    negligible in comparison in relation to the correlator? When I say
    fine grained, narrowband correlations, I mean a fine FFT followed by
    X engine, with the integration time very small. The time scale
    certainly can be no smaller than N_FFT samples, but it could still
    be pretty small. That's certainly possible in principle, with a
    large enough back end. I wonder if there are applications that would
    be well served by this kind of architecture, with a fine F engine
    followed by a correlator.<br>
     <br>
    <blockquote cite="mid:545CC6E4-33CA-4FEB-B9F1-1846387521EB@byu.edu"
      type="cite">
      <div>
        <div>
          <div>
            <div><br>
            </div>
            <div>For pulsar work I don't know what the frequency
              resolution requirements are, so I can't judge whether you
              can beamform after correlation.  I don't think "fine
              grained, narrowband correlations" are possible since to be
              narrowband means correlations would necessarily be coarse
              grained in time.  </div>
            <br>
            <blockquote type="cite">
              <div text="#000000" bgcolor="#FFFFFF"><br>
                There is another motivation for beamformers in the
                broader PAF community, and that is for synthesis arrays.
                The correlator for the dish array is expensive, so one
                would only want to correlate as small a number of beams
                from each PAF as possible. This raises a question -
                could correlations from each PAF be used to get
                correlations of the dish array somehow? Is there an
                efficient two-level correlator architecture, with a PAF
                correlator for each dish, followed by the synthesis
                array correlator? I suspect not, but I can't quite
                convince myself. In any case, it seems that for single
                dish telescopes, there's less motivation to use a
                beamformer back end instead of a correlator.<br>
              </div>
            </blockquote>
            <div><br>
            </div>
            I agree with this.  That is why ASKAP uses a real-time
            beamformer ahead of the correlator.  Correlation across the
            dishes requires frequency channelized times series, not
            integrated data.  I have not seen proposals for a two-level
            correlator.  The first stage (PAF level) correlation removes
            all absolute time or phase reference information for one
            dish relative to another, which is the key signal component
            needed to form the 2nd level (dish to dish) correlation.
             The other reason for doing real-time beamforming at the PAF
            level is to reduce data transport requirements (many more
            elements than beams).  Eigenbeams further reduce the data
            transport load.  Integrated correlations would of course be
            even lower data rate, but I don't see how to get the cross
            dish visibilities from PAF correlations.</div>
          <div><br>
          </div>
          <div>For a single dish PAF the arguments are weaker for
            real-time beamforming unless actual time samples or
            superfine spectral resolution are needed.</div>
          <div><br>
            <blockquote type="cite">
              <div text="#000000" bgcolor="#FFFFFF"><br>
                Finally, there is probably a bit of analysis one could
                to to show how closely beams must be spaced in order for
                the information in the beams to be equivalent to the
                correlations. It's essentially the problem of recovering
                the matrix R from a set of inner products w'*R*w for
                many vectors w. I suspect that if one forms HPBW/2
                spaced beams over the PAF FoV, the information in the
                beams is less than but on the order of the information
                in R in some quantiable sense. Information in the deep
                sidelobes is lost, but most of the large eigenvalues of
                R represent sources in the field of view. With finer
                beams, even just over the PAF field of view, all
                information even out in deep sidelobes could well be
                contained in the beam outputs, but that's a moot point,
                as one would not form that many beams in practice.
                There's also the idea of eigenbeams proposed by Cornwell
                et al., so that one can form very few PAF beams yet
                still have information over the full field of view.<br>
              </div>
            </blockquote>
            <div><br>
            </div>
            I agree with this.</div>
          <div><br>
          </div>
          <div><br>
            <blockquote type="cite">
              <div text="#000000" bgcolor="#FFFFFF"><br>
                Karl<br>
                <br>
                <br>
                <div class="moz-cite-prefix">On 5/20/2013 9:25 AM, Brian
                  Jeffs wrote:<br>
                </div>
                <blockquote
                  cite="mid:1D10B2E0-FBCD-45C4-A239-62085605DD78@byu.edu"
                  type="cite">Rick,
                  <div><br>
                  </div>
                  <div>I agree that you have much more flexibility to
                    try different beamformer designs, detection
                    algorithms, interference mitigation techniques,
                    superresolution, calibration correction, etc. if you
                    store and operate on the accumulated cross products
                    (correlation matrices).  However, you give up the
                    ability to do fine resolution spectral processing.
                     You are stuck with the coarseness of the
                    correlator's frequency channelization.  I don't know
                    how problematic this is for some applications, such
                    as pulsar searches, where fine spectral resolution
                    may be needed.</div>
                  <div><br>
                  </div>
                  <div>Brian</div>
                  <div><br>
                    <div>
                      <div>On May 20, 2013, at 6:38 AM, Anish Roshi
                        wrote:</div>
                      <br class="Apple-interchange-newline">
                      <blockquote type="cite">
                        <div dir="ltr">
                          <div>
                            <div><br>
                            </div>
                            Yes indeed. We can form images with beams
                            with different optimization if the
                            correlations are recorded.<br>
                          </div>
                          Anish<br>
                        </div>
                        <div class="gmail_extra"><br>
                          <br>
                          <div class="gmail_quote">On Sun, May 19, 2013
                            at 9:57 AM, Rick Fisher <span dir="ltr">
                              <<a moz-do-not-send="true"
                                href="mailto:rfisher@nrao.edu"
                                target="_blank">rfisher@nrao.edu</a>></span>
                            wrote:<br>
                            <blockquote class="gmail_quote"
                              style="margin:0 0 0 .8ex;border-left:1px
                              #ccc solid;padding-left:1ex">
                              Brian, Karl,<br>
                              <br>
                              In trying to understand the ASKAP data
                              processing architecture, I'm<br>
                              beginning to understand the fundamental
                              importance of saving the<br>
                              cross-products between array element
                              outputs in our own PAF data<br>
                              processing.  In forming beams you throw
                              away a lot of information in the<br>
                              array's field of view that can be
                              recovered only by forming many beams<br>
                              with very close spacing (much closer than
                              HPBW/2).  This has important<br>
                              consequences for the sensitivity to point
                              sources, as in the search for<br>
                              pulsars.  Hence, I would suggest that the
                              most important archived outputs<br>
                              from your signal processor are the
                              cross-products rather than formed<br>
                              beams.  For a given data storage volume,
                              there's more information in the<br>
                              cross-products than in the formed beam
                              outputs.  In some respects, the<br>
                              "beam" concept is a holdover from a
                              waveguide feed where there's only one<br>
                              output, and most of the information in the
                              focal plane is reflected back<br>
                              into the sky.<br>
                              <br>
                              Rick<br>
_______________________________________________<br>
                              Pafgbt mailing list<br>
                              <a moz-do-not-send="true"
                                href="mailto:Pafgbt@listmgr.cv.nrao.edu">Pafgbt@listmgr.cv.nrao.edu</a><br>
                              <a moz-do-not-send="true"
                                href="http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt"
                                target="_blank">http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt</a><br>
                            </blockquote>
                          </div>
                          <br>
                        </div>
                        _______________________________________________<br>
                        Pafgbt mailing list<br>
                        <a moz-do-not-send="true"
                          href="mailto:Pafgbt@listmgr.cv.nrao.edu">Pafgbt@listmgr.cv.nrao.edu</a><br>
                        <a moz-do-not-send="true"
                          class="moz-txt-link-freetext"
                          href="http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt">http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt</a><br>
                      </blockquote>
                    </div>
                    <br>
                  </div>
                  <br>
                  <fieldset class="mimeAttachmentHeader"></fieldset>
                  <br>
                  <pre wrap="">_______________________________________________
Pafgbt mailing list
<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:Pafgbt@listmgr.cv.nrao.edu">Pafgbt@listmgr.cv.nrao.edu</a>
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt">http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt</a>
</pre>
                </blockquote>
                <br>
                <pre class="moz-signature" cols="72">-- 
Karl F. Warnick                               
Department of Electrical and Computer Engineering
Brigham Young University
459 Clyde Building
Provo, UT 84602
(801) 422-1732





</pre>
              </div>
              _______________________________________________<br>
              Pafgbt mailing list<br>
              <a moz-do-not-send="true"
                href="mailto:Pafgbt@listmgr.cv.nrao.edu">Pafgbt@listmgr.cv.nrao.edu</a><br>
              <a class="moz-txt-link-freetext" href="http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt">http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt</a><br>
            </blockquote>
          </div>
          <br>
        </div>
      </div>
    </blockquote>
    <br>
    <pre class="moz-signature" cols="72">-- 
Karl F. Warnick                               
Department of Electrical and Computer Engineering
Brigham Young University
459 Clyde Building
Provo, UT 84602
(801) 422-1732





</pre>
  </body>
</html>