<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
  <meta content="text/html;charset=ISO-8859-1" http-equiv="Content-Type">
</head>
<body bgcolor="#ffffff" text="#000000">
I'll let Brian comment, but I think our near-term goal is a prototype
FXB engine using several ROACH boards with standard two channel iADC
boards that we would eventually scale to a 40+ channel  broadband back
end.<br>
<br>
The narrowband iADC64 board is a side project that could be a possible
replacement for our stream to disk acquisition system. If it made
sense, we could certainly consider implementing a beamformer on the 64
channel system.<br>
<br>
Karl<br>
<br>
Rick Fisher wrote:
<blockquote
 cite="mid:Pine.LNX.4.64.1002091609160.16301@clro.cv.nrao.edu"
 type="cite">
  <pre wrap="">Karl, Brian,

Are you thinking of implementing a modest bandwith beamformer on a single 
ROACH board for starters?

Rick

On Tue, 9 Feb 2010, Karl Warnick wrote:

  </pre>
  <blockquote type="cite">
    <pre wrap="">Rick,

We are having an iADC64 board built right now, which has 64 RF inputs and
a sample rate of 50 or 64 Msamples/sec per channel. It plugs into one
ROACH board. Would this work?

Karl

Rick Fisher wrote:

 I was thinking that we might get early HI science by putting a narrow band 
beamformer in the receiver room, but this may not make sense.  It's been 
pointed out that we'd need at least 10 ROACH boards just to accommodte 38 
ADCs.  I'd be prepared to abandon the idea of any beamformer in the 
receiver room, but maybe there's a counter-argument.  Eliminating an 
interm solution may very well shorten the time to implement a wider 
bandwith beamformer.

Rick

On Tue, 9 Feb 2010, Roger Norrod wrote:



 I wonder about the wisdom of #5.  It sounds like many months of specialized 
effort to get a limited system in the Receiver Room, and it could be a 
serious diversion from where we need to concentrate work. The analog links 
may be considered a diversion too, but at least there's a chance they become 
part of a long-range solution.  If we could manage to get some people to 
really concentrate for a few months on the analog/digital link comparisons 
(#7), and leave #5 as a fall-back position, I think it would be good.

Roger


Rick Fisher wrote:



 3. Ultimately we want to digitize the signal from each array element
 in the front-end box for greatest phase and amplitude stability and
 lower cable weight of optical fibers.  However, the first array will
 use 38 coaxial cables to carry the element signals into the GBT
 receiver room.  These cables should have sufficiently low loss and
 outer shield leakage to carry signals frequencies up to 2.3 GHz so
 that they can transfer either IF or RF signals to the receiver room.

 5. The long-range plans are to locate the beamformer electronics in
 the Jansky laboratory.  This offers the greatest room for growth and
 minimizes the problems of space, weight, and EMI in the GBT receiver
 room.  However, the first beamformer with modest bandwidth will be
 located in the GBT receiver room so that its implementation is not
 dependent on transmitting its input signals to the Jansky lab.  [Can
 fewer ROACH boards accommodate 38 lower speed ADCs?]

 7. We'll vigorously develop digitizers and digital fiber links that
 allow signals from the array elements to be transmitted to the Jansky
 lab on digital fiber links, but we don't want this to be on the critical
 path to implementing a wider bandwidth beamformer.  An alternative
 solution will be to install commercial 0.9-2.2 GHz analog fiber modems
 to transmit RF signals directly to the lab.  The feasibility of such a
 solution depends on it being stable enough to be tracked with the
 phase and amplitude monitoring system.  Two modem pairs are in hand,
 and tests of them on fibers between the GBT and the lab will begin
 soon.  Each modem pair costs about $2K, and a set to handle 38 signal
 paths will cost about $80K so we need to be certain that it will offer
 significant scientific pay-off before taking this option.  Note that
 the modems in hand do not work below 900 MHz so they would not transmit
 low-frequency IF signals from the BYU receiver modules currently under
 construction.  Analog modems that work at lower frequencies are
 available, but they may be more expensive.



 _______________________________________________
Pafgbt mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Pafgbt@listmgr.cv.nrao.edu">Pafgbt@listmgr.cv.nrao.edu</a>
<a class="moz-txt-link-freetext" href="http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt">http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt</a>




 -- 
Karl F. Warnick                                  email:  <a class="moz-txt-link-abbreviated" href="mailto:warnick@byu.edu">warnick@byu.edu</a>
Associate Professor                              Tel:    (801) 422-1732
Department of Electrical & Computer Engineering  FAX:    (801) 422-0201
Brigham Young University
459 Clyde Building
Provo, UT 84602







    </pre>
  </blockquote>
  <pre wrap=""><!---->_______________________________________________
Pafgbt mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Pafgbt@listmgr.cv.nrao.edu">Pafgbt@listmgr.cv.nrao.edu</a>
<a class="moz-txt-link-freetext" href="http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt">http://listmgr.cv.nrao.edu/mailman/listinfo/pafgbt</a>

  </pre>
</blockquote>
<br>
<pre class="moz-signature" cols="72">-- 
Karl F. Warnick                                  email:  <a class="moz-txt-link-abbreviated" href="mailto:warnick@byu.edu">warnick@byu.edu</a>
Associate Professor                              Tel:    (801) 422-1732
Department of Electrical & Computer Engineering  FAX:    (801) 422-0201
Brigham Young University
459 Clyde Building
Provo, UT 84602





</pre>
</body>
</html>