
8 Mark R. Calabretta and Eric W. Greisen: Representations of celestial coordinates in FITS

1

Rθ

sinθ

θc
o
s

θ

µ

gnomonic

stereographic

orthographic

µ=0

µ=1

µ=∞

Fig. 4. (Left) geometry of the perspective zenithal projections: (right) the three important special cases.

4.1.1. AZP: perspective zenithal

Perspective zenithal projections are generated from a
point and carried through the sphere to the plane of pro-
jection as illustrated in Fig. 4. We need consider only the
case where the plane of projection is tangent to the sphere
at its pole; the projection is simply rescaled if the plane in-
tersects some other parallel of native latitude. If the source
of the projection is at a distance µ from the centre of the
sphere (µ > 0 in the direction away from the plane of
projection), then it is straightforward to show that

Rθ =
180◦

π

µ+ 1
µ+ sin θ

cos θ . (16)

The inverse of this equation is

θ = arg (ρ, 1)− sin−1

(
ρµ√
ρ2 + 1

)
, (17)

where

ρ =
π

180◦
Rθ

µ+ 1
.

The FITS keyword PVj 1s, attached to latitude coordi-
nate j, will be used to specify µ and the FITS projection
type will be represented by the code AZP.

A near-sided perspective projection may be obtained
with µ < −1. This correctly represents the image of a
sphere, such as a planet, when viewed from a distance |µ|
times the planetary radius. The coordinates of the refer-
ence point may be expressed in planetary longitude and
latitude, (λ, β). Also, the signs of the relevant elements
of the CDj is matrix may be chosen so that longitude in-
creases as appropriate for a sphere seen from the outside
rather than from within. A first-order correction for plan-
etary oblateness may also be applied through the CDj is
matrix.
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Fig. 5. Gnomonic projection; diverges at θ = 0.

4.1.2. TAN: gnomonic

The perspective zenithal projection with µ = 0, the
gnomonic5 is widely used in optical astronomy and was
given its own code within the AIPS convention, namely
TAN6. For µ = 0 Eq. (16) reduces to

Rθ =
180◦

π
cot θ , (18)

with inverse

θ = tan−1

(
180◦

πRθ

)
. (19)

5 The gnomonic projection is the oldest known, dating to
Thales of Miletus (ca. 624-547b.c.). The stereographic and or-
thographic date to Hipparchus (ca. 190-after 126b.c.).

6 Referring to the dependence of Rθ on the angular separa-
tion between the tangent point and field point, i.e. the native
co-latitude.
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Fig. 6. Stereographic (STG) projection; diverges at θ = −90◦.

The gnomonic projection is illustrated in Fig. 5. Since the
projection is from the centre of the sphere, all great cir-
cles are projected as straight lines. Thus, the shortest dis-
tance between two points on the sphere is represented as
a straight line interval, which, however, is not uniformly
divided. The gnomonic projection diverges at θ = 0, but
one may use a gnomonic projection onto the six faces of a
cube to display the whole sky. See Sect. 4.6.1 for details.

4.1.3. STG: stereographic

The stereographic projection, the second important spe-
cial case of the perspective zenithal projection defined by
the AIPS convention, has µ = 1, for which Eq. (16) be-
comes

Rθ =
180◦

π

2 cos θ
1 + sin θ

, (20)

=
360◦

π
tan

(
90◦ − θ

2

)
,

with inverse

θ = 90◦ − 2 tan−1

(
πRθ

360◦

)
. (21)

As first realized by astronomer Edmond Halley (1656-
1742), the stereographic projection illustrated in Fig. 6
is the conformal (orthomorphic) zenithal projection, ev-
erywhere satisfying the requirement for conformality of
zenithal projections:

∂Rθ

∂θ
=

−πRθ

180◦ cos θ
. (22)

It also has the amazing property that it maps all circles
on the sphere to circles in the plane of projection. Note,
however, that concentric circles on the sphere are not nec-
essarily concentric in the plane of projection.

0
30

60
9
0

120

150
180

21
0

24
0

2
7
0

30
0

33
0

60

30

0
30

60
9
0

120

150
180

21
0

24
0

2
7
0

30
0

33
0

60

30

0
30

60
9
0

120

150
180

21
0

24
0

2
7
0

30
0

33
0

60

30

Fig. 7. Slant orthographic (SIN) projection: (top) the ortho-
graphic projection, ξ = 0, η = 0, north and south sides begin
to overlap at θ = 0; (bottom left) Z = 30◦, χ = 45◦; (bottom
right) projection appropriate for an east-west array observing
at δ0 = 60◦.

4.1.4. SIN: slant orthographic

The perspective zenithal projection with µ = ∞, the or-
thographic, is illustrated in the upper portion of Fig. 7 (at
consistent scale). It represents the visual appearance of a
sphere, e.g. a planet, when seen from a great distance.

The orthographic projection is widely used in aper-
ture synthesis radioastronomy and was given its own code
within the AIPS convention, namely SIN7. Use of this pro-
jection code obviates the need to specify an infinite value
as a parameter of AZP. In this case, Eq. (16) becomes

Rθ =
180◦

π
cos θ , (23)

with inverse

θ = cos−1
( π

180◦
Rθ

)
. (24)

In fact, use of the orthographic projection in radio
interferometry is an approximation, applicable only for
small field sizes. However, an exact solution exists where
the interferometer baselines are co-planar. It reduces to
what Greisen (1983) called the NCP projection for the par-
ticular case of an East-West interferometer as considered
by Brouw (1971). This “slant orthographic” projection is
a simple extension of the above formulæ

x =
180◦

π
[ cos θ sinφ+ ξ (sin θ − 1) ] , (25)

y = −180◦

π
[ cos θ cosφ+ η (sin θ − 1) ] , (26)

It can be shown that these equations describe the case
where the point of projection lies off the central axis of

7 Similar etymology to TAN.
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Fig. 8. Zenithal equidistant (ARC) projection; no limits.

the generating sphere and that the result is equivalent to
an orthographic projection which has been stretched in
one direction. We therefore extend the SIN projection to
encompass it, with ξ and η given by keywords PVj 1s and
PVj 2s, respectively, attached to latitude coordinate j.

The relationship between (ξ, η) and the native coordi-
nates, (φc, θc), of the central point of the projection is

ξ = cot θc sinφc ,
η = cot θc cosφc ,

(27)

or

φc = 180◦ + arg(η, ξ) ,

θc = tan−1

(
1√

ξ2+η2

)
.

(28)

The outer boundary of the SIN projection is given by

θbound = tan−1 (ξ sinφ+ η cosφ) . (29)

Appendix D derives and discusses the slant ortho-
graphic projection in a radioastronomy context. Two ex-
ample graticules are illustrated in the lower portion of
Fig. 7.

4.1.5. ARC: zenithal equidistant

Some non-perspective zenithal projections are also of in-
terest in astronomy. The zenithal equidistant projection
first appeared in Greisen (1983) as ARC. It is widely used
as the approximate projection of Schmidt telescopes. As
illustrated in Fig. 8, the native meridians are uniformly
divided to give equi-spaced parallels. Thus

Rθ = 90◦ − θ , (30)
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Fig. 9. Zenithal polynomial projection (ZPN) with parameters,
0.050, 0.975, -0.807, 0.337, -0.065, 0.010, 0.003, -0.001; limits
depend upon the parameters.

which is trivially invertible. This projection was also
known in antiquity.

4.1.6. ZPN: zenithal polynomial

The zenithal polynomial projection, ZPN, generalizes the
ARC projection by adding polynomial terms up to a large
degree in the zenith distance. We define it as

Rθ =
180◦

π

99∑
i=0

Pi

( π

180◦
(90◦ − θ)

)i

. (31)

Note the units implied by the π

180
◦ . It is not immediately

clear why P0 would ever be set non-zero, however we do
not dismiss it as a possibility. Since its inverse cannot be
expressed analytically, this projection should only be used
when the geometry of the observations require it. In par-
ticular, it should never be used as an nth-degree expansion
of one of the standard zenithal projections.

The Pi are given by the keywords PVj 0s, PVj 1s, . . .,
PVj 99s, attached to latitude coordinate j, all of which have
default values of zero. An example of this projection is
illustrated in Fig. 9.

4.1.7. ZEA: zenithal equal-area

Lambert’s zenithal equal-area projection illustrated in
Fig. 10 is constructed by defining Rθ so that the area
enclosed by the native parallel at latitude θ in the plane
of projection is equal to the area of the corresponding
spherical cap. It may be generated using

Rθ =
180◦

π

√
2(1− sin θ) (32)
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Table 5. Second example FITS header (blank lines have been inserted for clarity).

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

NAXIS = 2 / 2-dimensional image

NAXIS1 = 2048 / x axis (fastest)

NAXIS2 = 2048 / y axis (2nd fastest)

MJD-OBS = 44258.7845612 / MJD at start of observation

CD1_1 = -0.005 / Transformation matrix element

CD1_2 = 0.00002 / Transformation matrix element

CD2_1 = -0.00001 / Transformation matrix element

CD2_2 = 0.005 / Transformation matrix element

PV2_1 = -25.0 / Conic mid-latitude

CRPIX1 = 1024.5 / Pixel coordinate of reference point

CRPIX2 = -1023.5 / Pixel coordinate of reference point

CTYPE1 = ’GLON-COE’ / Conic equal area projection

CTYPE2 = ’GLAT-COE’ / Conic equal area projection

CRVAL1 = 90.0 / Galactic longitude at reference point

CRVAL2 = -25.0 / Galactic latitude at reference point

CD1_1A = -0.005 / Transformation matrix element

CD1_2A = 0.00002 / Transformation matrix element

CD2_1A = -0.00001 / Transformation matrix element

CD2_2A = 0.005 / Transformation matrix element

PV2_1A = -25.0 / Conic mid-latitude

CRPIX1A = 1024.5 / Pixel coordinate of reference point

CRPIX2A = -1023.5 / Pixel coordinate of reference point

CTYPE1A = ’ELON-COE’ / Conic equal area projection

CTYPE2A = ’ELAT-COE’ / Conic equal area projection

CRVAL1A = -7.0300934 / Ecliptic longitude at reference point

CRVAL2A = 34.8474143 / Ecliptic latitude at reference point

LONPOLEA= 6.3839706 / Native longitude of ecliptic pole

LATPOLEA= 29.8114400 / Ecliptic latitude of native pole

RADESYSA= ’FK5 ’ / Mean IAU 1984 ecliptic coordinates

and (10) must therefore be used to obtain (`p, bp) =
(−90◦, 90◦). The galactic coordinates of the field point
listed in Table 6 are then readily obtained by application
of Eqs. (2).

The header says that the ecliptic coordinates of the ref-
erence point are (λ0, β0) = (−7.◦0300934, 34.◦8474143) and
the native longitude of the ecliptic pole is φp = 6.◦3839706.
It also specifies LATPOLEA as 29.◦8114400. In this case
Eq. (8) has two valid solutions, βp = −25.◦1367794 ±
54.◦9482194, and the one closest in value to LATPOLEA (in
fact equal to it) is chosen. If LATPOLEA had been omit-
ted from the header its default value of +90◦ would have
selected the northerly solution anyway, but of course it
is good practice to make the choice clear. The value of
λp may be obtained by a straightforward application of
Eqs. (9) and (10), and the ecliptic coordinates of the field
point computed via Eqs. (2) are listed in Table 6 as the
final step of the calculation. The reader may verify the
calculation by transforming the computed galactic coor-
dinates of the field point to mean ecliptic coordinates.

Table 6. Working for example 2.

(p1, p2) 1957.2 775.4
(x, y) −4.◦6275220 8.◦9851730
θa, η −25.◦0000000 0.◦0000000
θ1, θ2 −25.◦0000000 −25.◦0000000
γ −0.8452365
C, Y0 −0.4226183 −122.◦8711957
(φ, θ) −4.◦7560186 −15.◦8973800

(`p, bp) −90.◦0000000 90.◦0000000
(`, b) 85.◦2439814 −15.◦8973800

(λp, βp) −179.◦9767827 29.◦8114400
(λ, β) −14.◦7066741 43.◦0457292

6.5. Header interpretation example 3

This example has been adapted from a real-life FITS data
file written by a popular image analysis system. The sim-
plicity of the header shown in Table 7 is deceptive; it is
actually presented as an example of how not to write a
FITS header, although the latent problem with its inter-
pretation is quite subtle.
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Table 7. Third example FITS header.

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

NAXIS = 2 / 2-dimensional image

NAXIS1 = 181 / x axis (fastest)

NAXIS2 = 91 / y axis (2nd fastest)

CD1_1 = -1.0 / Transformation matrix element

CD1_2 = 0.0 / Transformation matrix element

CD2_1 = 0.0 / Transformation matrix element

CD2_2 = 1.0 / Transformation matrix element

CRPIX1 = 226.0 / Pixel coordinate of reference point

CRPIX2 = 46.0 / Pixel coordinate of reference point

CTYPE1 = ’GLON-CAR’ / Plate carree projection

CTYPE2 = ’GLAT-CAR’ / Plate carree projection

CRVAL1 = 30.0 / Galactic longitude at reference point

CRVAL2 = 35.0 / Galactic latitude at reference point

Observe that the image spans 180◦ in native longitude
and 90◦ in native latitude and that the reference pixel lies
outside the image. In fact, the reference pixel is located so
that the native longitude runs from 45◦ to 225◦ and hence
the image lies partly inside and partly outside the normal
range of native longitude, [−180◦,180◦].

In fact, as might be expected, this makes no difference
to the computation of celestial coordinates. For example,
in computing the celestial coordinates of pixel (1, 1) we
readily find from Eqs. (46) and (47) that the native coor-
dinates are (φ, θ) = (225◦,−45◦). The fact that φ exceeds
180◦ becomes irrelevant once Eqs. (2) are applied since
the trigonometric functions do not distinguish between
φ = 225◦ and φ = −135◦. The latter value is the appro-
priate one to use if the cylinder of projection is considered
to be “rolled out” over multiple cycles. Consequently the
correct galactic coordinates are obtained.

So where is the problem? It surfaces when we come to
draw a coordinate grid on the image. A meridian of longi-
tude, for example, is traced by computing the pixel coor-
dinates for each of a succession of latitudes along the seg-
ment of the meridian which crosses the image. As usual, in
computing pixel coordinates, the celestial coordinates are
first converted to native coordinates by applying Eqs. (5)
and herein lies the rub; the native longitude will be re-
turned in the normal range [−180◦,180◦]. Consequently, in
those parts of the image where φ > 180◦ the pixel coordi-
nates computed will correspond to the point at φ − 360◦,
i.e. in the part of the principle cycle of the cylindrical
projection outside the image.

In principle it is possible to account for this, at least
in specific cases, particularly for the cylindrical projec-
tions which are somewhat unusual in this regard. In prac-
tice, however, it is difficult to devise a general solution,
especially when similar problems may arise for projection
types where it is not desirable to track φ outside its nor-
mal range. For example, consider the case where an Aitov
projection is used to represent the whole sky; since its
boundary is curved there will be out-of-bounds areas in
the corner of the image. Normally a grid drawing rou-

tine can detect these by checking whether the inverse pro-
jection equations return a value for φ outside its normal
range. It may thus determine the proper boundary of the
projection and deal with the discontinuity which arises
when a grid line passes through it.

How then should the header have been written? Note
that the problem exists at the lowest level of the coor-
dinate description, in the conversion between (x, y) and
(φ, θ), and the solution must be found at this level. The
problem arose from a particular property of cylindrical
projections in that they have x ∝ φ. We must use this
same property, which we might call φ-translation invari-
ance, to recast the coordinate description into a more man-
agable form. φ-translation invariance simply means that
changing the origin of φ corresponds to shifting the im-
age in the x-direction. In other words, we can transfer the
reference point of the projection from its current location
to another location along the native equator without hav-
ing to regrid the image. The fact that the CDj is matrix is
unity in this example makes this task a little simpler than
otherwise.

Note first that because the image straddles φ = 180◦

we can’t simply reset CRPIX1 so as to shift the refer-
ence point to φ = −360◦; the image would then strad-
dle φ = −180◦ which is no improvement. In this exam-
ple it is convenient and sufficient to shift the reference
point to (φ, θ) = (−180◦, 0◦) which corresponds to pixel
coordinate (p1, p2) = (46.0, 46.0). Hence we need to reset
CRPIX1 to 46.0 and adjust the keywords which define the
celestial coordinate system. The reader may readily verify
that the galactic coordinates of the new reference point are
(`, b) = (210◦,−35◦) and whereas the old, implied value of
LONPOLE was 0◦ when δ0 > 0, now that δ0 < 0 its new
implied value is 180◦, and this is correct. However, we will
set it explicitly anyway. The keywords to be changed are
therefore

CRPIX1 = 46.0 ,
CRVAL1 = 210◦ ,
CRVAL2 = −35◦ ,
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LONPOLE = 180◦ ,

What if the CDj is matrix was not unity? The prob-
lem of determining the pixel coordinates where (φ, θ) =
(−180◦, 0◦) would have presented little extra difficulty, al-
though in general CRPIX2 would also need to be changed.
On reflection it may come as a surprise that changing the
CRPIXi like this does not fundamentally alter the linear
transformation. However it may readily be verified that
the only effect of changing the CRPIXi is to change the
origin of the (x, y) coordinates.

6.6. Header construction example 1

The following example comes from the 4096 × 4096
pixel SFD infrared dust maps produced by Schlegel et
al. (1998). The authors chose to regrid data from the
COBE/DIRBE and IRAS/ISSA maps onto two zenithal
equal area (ZEA) projections centered on the galactic poles.
The projection formula given in their appendix C ex-
pressed in terms of standard 1-relative FITS pixel coordi-
nates (p1, p2) is

p1 − 1 = 2048
√

1− n sin b cos `+ 2047.5 ,
p2 − 1 = −n2048

√
1− n sin b sin `+ 2047.5 ,

where n = +1 for the NGP and n = −1 for the SGP maps.
Now for ZEA from Eqs. (1), (12), (13), and (32)

CD1 1(p1 − CRPIX1) =
√

2
180◦

π

√
1− sin θ sinφ ,

CD2 2(p2 − CRPIX2) = −
√

2
180◦

π

√
1− sin θ cosφ .

If we take the NGP case first, the SFD equations may be
rewritten as

p1 − 2048.5 = −2048
√

1− sin b sin(`− 90◦) ,
p2 − 2048.5 = −2048

√
1− sin b cos(`− 90◦) .

By inspection of the two sets of equations we must have

NAXIS = 2 ,
NAXIS1 = 4096 ,
NAXIS2 = 4096 ,
CRPIX1 = 2048.5 ,
CRPIX2 = 2048.5 ,
CD1 1 = −180◦

√
2/(2048π) ,

CD2 2 = 180◦
√

2/(2048π) ,
CTYPE1 = ‘GLON-ZEA’ ,

CTYPE2 = ‘GLAT-ZEA’ ,

` = φ+ 90◦ ,
b = θ .

Now, writing ` and b in place of α and δ in Eqs. (2), we
have to determine `p, bp and φp to give (`, b) in terms of

(φ, θ). This is easy because we know bp = 90◦ and the
simple special case Eqs. (3) apply so

` = φ+ (`p − φp − 180◦) .

We have a degree of freedom here since only `p − φp is
determined. It’s best to let φp take its default value which
is 0◦ for zenithal projections with the celestial pole at the
native pole (it’s 180◦ otherwise), so we must have

CRVAL1 = 270◦ ,
CRVAL2 = 90◦ ,

LONPOLE = 0◦ .

Although LONPOLE assumes its default value here it would
of course be wise to write it explicitly into the header. The
procedure for the SGP case is similar. The SFD equations
may be rewritten

p1 − 2048.5 = 2048
√

1− sin(−b) sin(90◦ − `) ,

p2 − 2048.5 = 2048
√

1− sin(−b) cos(90◦ − `) ,

whence

CRPIX1 = 2048.5 ,
CRPIX2 = 2048.5 ,
CD1 1 = 180◦

√
2/(2048π) ,

CD2 2 = −180◦
√

2/(2048π) ,
` = 90◦ − φ ,

b = −θ .

Equations (4) apply for bp = −90◦ so

` = (`p + φp)− φ .

Again we let φp take its default value of 180◦, so

CRVAL1 = 270◦ ,
CRVAL2 = −90◦ ,

LONPOLE = 180◦ .

It’s generally easier to interpret coordinate headers than
to construct them so it’s essential after formulating the
header to test it at a few points and make sure that it
works as expected. Note that this sort of translation exer-
cise wouldn’t be necessary if the formalism of this paper
was used right from the start, i.e. in the regridding oper-
ation used to produce the maps.

6.7. Header construction example 2

Consider now the coordinate description for the two-
dimensional image formed by a long slit spectrograph. We
assume that the wavelength axis of length 1024 and disper-
sion ∆λ nm/pixel corresponds to the p1 pixel coordinate,
and the 2048 pixel spatial axis corresponds to p2. The slit
is centred on equatorial coordinates (α0, δ0) and oriented
at position angle ρ measured such that when ρ = 0 the
first spectrum is northwards. We will assume that the tele-
scope and spectrograph optics are such that the distance
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keywords shown here are used to specify the minimum
and maximum legal values in XPOS and YPOS columns and
are useful for determining the range of each axis when
constructing the image histogram.

Appendix B: Mathematical methods

B.1. Coordinate rotation with matrices

The coordinate rotations represented in Eqs. (2) or (5)
may be represented by a matrix multiplication of a vector
of direction cosines. The matrix and its inverse (which is
simply the transpose) may be pre-computed and applied
repetitively to a variety of coordinates, improving perfor-
mance. Thus, we have l
m
n

 =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 l′

m′

n′

 , (B.1)

where

l′ = cos δ cosα
m′ = cos δ sinα
n′ = sin δ
l = cos θ cosφ
m = cos θ sinφ
n = sin θ

r11 = − sinαp sinφp − cosαp cosφp sin δp
r12 = cosαp sinφp − sinαp cosφp sin δp
r13 = cosφp cos δp
r21 = sinαp cosφp − cosαp sinφp sin δp
r22 = − cosαp cosφp − sinαp sinφp sin δp
r23 = sinφp cos δp
r31 = cosαp cos δp
r32 = sinαp cos δp
r33 = sin δp .

The inverse equation is l′

m′

n′

 =

 r11 r21 r31
r12 r22 r32
r13 r23 r33

 l
m
n

 . (B.2)

B.2. Iterative solution

Iterative methods are required for the inversion of sev-
eral of the projections described in this paper. One,
Mollweide’s, even requires solution of a transcendental
equation for the forward equations. However, these do not
give rise to any particular difficulties.

On the other hand, it sometimes happens that one
pixel and one celestial coordinate element is known and
it is required to find the others; this typically arises when
plotting graticules on image displays. Although analyti-
cal solutions exist for a few special cases, iterative meth-
ods must be used in the general case. If, say, i1 and α1

are known, one would compute the pixel coordinate as
a function of δ and determine δ1 as the value for which
i = i1. The unknown pixel coordinate elements would be
obtained in the process.

This prescription glosses over many complications,
however. All bounded projections may give rise to discon-
tinuities in the graph of i versus δ (to continue the above
example), for example where the α1 meridian crosses the
φ = ±180◦ boundary in cylindrical, conic and other pro-
jections. Even worse, if the meridian traverses a pole rep-
resented as a finite line segment then i may become multi-
valued at a particular value of δ. The derivative ∂i/∂δ will
also usually be discontinuous at the point of discontinuity,
and it should be remembered that some projections such
as the quad-cubes may also have discontinuous derivatives
at points within their boundaries.

We will not attempt to resolve these difficulties here
but simply note that wcslib (Calabretta, 1995) imple-
ments a solution.

Appendix C: Projection aliases

Table C.1 provides a list of aliases which have been used by
cartographers for special cases of the projections described
in Sect. 4.

Appendix D: The slant orthographic projection

The slant orthographic or generalized SIN projection
derives from the basic interferometer equation (e.g.
Thompson et al., 1986). The phase term in the Fourier
exponent is

℘ = (e− e0) ·B , (D.1)

where e0 and e are unit vectors pointing towards the field
centre and a point in the field, B is the baseline vector,
and we measure the phase ℘ in rotations so that we don’t
need to carry factors of 2π. We can write

℘ = puu+ pvv + pww , (D.2)

where (u, v, w) are components of the baseline vector in a
right-handed coordinate system with the w-axis pointing
from the geocentre towards the source and the u-axis lying
in the equatorial plane, and

pu = cos θ sinφ ,
pv = − cos θ cosφ ,
pw = sin θ − 1 ,

(D.3)

are the coordinates of (e− e0), where (φ, θ) are the longi-
tude and latitude of e in the spherical coordinate system
with the pole towards e0 and origin of longitude towards
negative v, as required by Fig. 3. Now, for a planar array
we may write

nuu+ nvv + nww = 0 (D.4)

where (nu, nv, nw) are the direction cosines of the normal
to the plane. Using this to eliminate w from Eq. (D.2) we
have
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Table C.1. Projection aliases.

Name Alias for Name Alias for

Gnomonic AZP with µ = 0 Miller CAR with x scaled by 2/π
= Central Equirectangular CAR with unequal scaling

Near-sided perspective AZP with µ = 1.35 Cartesian CAR

Clarke’s (first) AZP with µ = 1.35 = Equidistant
Clarke’s (second) AZP with µ = 1.65 cylindrical
James’ AZP with µ = 1.367 Cassini CAR transverse case
La Hire’s AZP with µ = 1.71 Transverse Mercator MER transverse case
Approximate equidistant = Transverse cylindrical

zenithal AZP with µ = 1.7519 orthomorphic
Approximate equal area Sinusoidal SFL

zenithal AZP with µ = 2.4142 = Global sinusoid (GLS)
Postel ARC = Mercator equal-area

= Equidistant = Mercator-Sanson
= Globular = Sanson’s

Lambert azimuthal Craster PAR

equivalent ZEA Bartholomew’s atlantis MOL oblique case
= Lambert azimuthal Mollweide’s homolographic MOL

equal area = Homolographic
= Lambert polar = Homalographic

azimuthal = Babinet
= Lorgna = Elliptical

Gall’s cylindrical CYP with µ = 1, λ =
√

2/2 Hammer equal area AIT

Cylindrical equal area CYP with µ = ∞ = Aitoff
Simple cylindrical CYP with µ = 0, λ = 1 = Aitov

= Central cylindrical Bartholomew’s nordic AIT oblique case
= Cylindrical central One-standard conic Conic with θ1 = θ2

perspective = Tangent conic
= Gall’s stereographic Two-standard conic Conic with θ1 6= θ2

Lambert’s cylindrical CYP with µ = ∞, λ = 1 = Secant conic
= Lambert’s equal area Murdoch conic similar to COD

Behrmann equal area CEA with λ = 3/4 Alber’s COE

Gall’s orthographic CEA with λ = 1/2 = Alber’s equal area
= Approximate Peter’s Lambert equal area COE with θ2 = 90◦

Lambert’s equal area CEA with λ = 1 Lambert conformal conic for spherical Earth = COO

Werner’s BON with θ1 = 90◦

℘ = [pu −
nu

nw
pw]u+ [pv −

nv

nw
pw]v (D.5)

Being the Fourier conjugate variables, the quantities in
brackets become the Cartesian coordinates, in radians, in
the plane of the synthesized map. Eqs (25) and (26) are
then readily derived from Eqs. (D.3) and (D.5), and in the
process we also obtain the following interpretation of the
projection parameters

ξ = nu/nw ,
η = nv/nw .

(D.6)

For an East-West interferometer, (ξ, η) = (0, cot δ0), while
Cornwell & Perley (1992) give, for any instant of time,
(ξ, η) = (tanZ sinχ, tanZ cosχ), where Z is the zenith
angle and χ is the parallactic angle.

In synthesizing a map a phase shift may be applied to
the visibility data in order to translate the field centre. If
the shift applied is

∆℘ = quu+ qvv + qww (D.7)

where (qu, qv, qw) is constant then equation (D.2) becomes

℘ = (pu − qu)u+ (pv − qv)v + (pw − qw)w , (D.8)

whence equation (D.5) becomes

℘ = [(pu − qu)− ξ(pw − qw)]u+
[(pv − qv)− η(pw − qw)]v . (D.9)

Equations (25) and (26) become

x =
180◦

π
([ cos θ sinφ+ ξ (sin θ − 1) ]− [qu − ξqw]) ,

y = −180◦

π
([ cos θ cosφ+ η (sin θ − 1) ]− [qv − ηqw]) ,

(D.10)

from which we see that the field centre is shifted by

∆x = 180
◦

π (qu − ξqw) ,
∆y = 180

◦
π (qv − ηqw) .

(D.11)

The shift is applied to the coordinate reference pixel.


