
On CROTAi 

Introduction  
Almost since the creation of FITS and the first elementary implementation of World 

Coordinate Systems, there has been a discussion of the “correct” implementation of 

coordinate rotations in more than two dimensions.  After brooding on this issue for several 

decades, I have produced some insights into the problem.  In this document I explain the 

technical nature of rotations in many dimensions, and offer some speculations on how these 

might be implemented in FITS.  On the other hand I do not see any urgency in doing this; 

over the more than thirty years that CROTn and CD_xy  have represented the possibilities, 

no one has complained that another implementation was necessary, so I conclude that this is 

probably the case.  I motivate the discussion below from a an esthetic desire to find an 

elegant solution, and a psychological desire for closure. 

I use various criteria to rank the quality of a representation.  Besides logical consistency, 

these include symmetry (e.g. no preference for particular axes), succintness (no redundant 

parameters), and geometric intuitiveness.  None of my suggestions is ideal in all these areas.  

It is self-evident that if an ideal representation existed, it would be long known. 

Mathematical nature of rotations in many dimensions 
I have derived most of the results here by myself, only to learn later that they were all well 

known among mathematicians, and most can be found in the Wikipedia.  For the most part, 

then, I only state various properties, without any proofs. 

The rotation group in n dimensions is known as SO(n) and consists of linear transformations 

that preserve distances and angles.  Any such transformation can be represented as a n*n 

matrix with the constraint that the rows and columns are orthonormal, i.e. that if ai and aj are 

two rows (or columns) of the matrix, then ai ∙aj = δij .  Since a n*n matrix has n2 elements, and 

the orthonomality requirements represents n(n+1)/2 conditions, an SO(n)  matrix has            

n(n-1)/2  independent parameters.  We will consider later how these might best be 

represented. 

Geometrical interpretation 

The following arguments follow those of Goldstein’s Classical Mechanics and are similar to 

those used in discussing Hermetian matrices in quantum mechanics. 

The SO(n) matrices can be largely described in terms of their eigenvalues and eigenvectors.  

The characteristic equation for the eigenvalues is a real algebraic equation of degree n, so 

it has n roots, which must be either real or occur in complex conjugate pairs.  The normal 

part of orthonormality  then requires than the absolute value of any eigenvalue be unity, so 

that in fact the only possible eigenvalues are 1, -1, or e±iφ .  The ortho part requires that all 

eigenvectors with distinct eigenvalues be orthogonal.  Note that the components of the 

eigenvectors are usually not real.  Now an eigenvector associated with an eigenvalue of 1 is 

unchanged by the SO(n) rotation, while one with -1 is reversed.  If we only consider rotations 

than can be realized continuously without reflections, we can and will ignore this last case.  If 

there are multiple eigenvectors with eigenvalues of 1, these represent a invariant subspace 



of the original n-dimensional space unaffected by the rotation.  We will also ignore this 

possibility as trivial.  Thus the remaining cases are: 

 if n is even, there are n/2 pairs of complex conjugate eigenvectors, all orthogonal 

 if n is odd there are (n-1)/2 such pairs, and there is a single invariant real 

eigenvector with eigenvalue of 1 (in 3 dimensions this is the rotation axis). 

We also assume that none of the complex eigenvalues are duplicate.  Suppose we take one 

of the conjugate pairs.   Since the eigenvalues are complex the eigenvectors must also be 

complex and they can be taken to be complex conjugates of each other:       and    *.  From 

these two complex vectors, two real orthogonal vectors can be formed by linear 

combinations:          * and               .  These real vectors are not eigenvectors, but 

any linear combination of them, after the specified rotation, can still be represented as a 

linear combination of the same two vectors.  Put another way, these two real vectors span a 

two dimensional subspace, otherwise known as a plane, that is invariant under the rotation.  

Any vector in this plane is rotated into another vector in the plane through an angle  φ which 

is the logarithm of  the eigenvalue e±iφ .  It turns out that the eigenvectors are independent of 

the angle φ.  Since we have assumed no duplicate eigenvalues, each of the invariant planes 

is orthogonal to the other ones. 

Summarized: for n even, the SO(n) can be represented by n/2 independent primitive 

rotations in n/2 orthogonal invariant planes.  By primitive rotation I mean the original simple 

rotation defined by sines and cosines of a rotation angle in a plane.  For n odd, the result is 

(n-1)/2 primitive rotations plus one invariant vector.  For convenience I let ne = n for n even 

and (n-1) for n odd.  

So suggestion #1 for a representation of SO(n), is to specify the ne/2 invariant planes, and 

the ne/2 rotation angles, one for each plane.  I call this the IP (Invariant Plane) 

representation.  It has the advantages of being reasonably geometrically intuitive and 

symmetric.  In a FITS environment one could specify with keywords the components of the c 

and s vectors, and the rotation angles φ.  This suggestion fails rather badly in the 

succinctness criterion; the number of parameters is approximately 1.5*n2.  The reason is that 

there are many inexplicit constraints, or redundant degrees of freedom (rdf’s) on the 

eigenvectors.  Consider defining the first invariant plane by specifying any two real vectors 

that span the plane.  Naively this requires 2n parameters:the vector coordinates.  But these 

are more than are necessary to define the plane.  We can arbitrarily add 3 constraints:that 

the vectors be of unit length and that they be orthogonal.  There is a 4th rdf, namely that a 

pair of such unit vectors, rotated in the invariant plane, represents the same plane.  This is 

equivalent to the fact that the original eigenvector      can be multiplied by any arbitrary phase 

factor without changing its validity.  So in fact the number of parameters necessary to specify 

the first plane is 2n-4.  If we want to specify a second plane we can only do this in the n-2 

dimensional subspace that is orthogonal to the first plane, so the number of new parameters 

is 2(n-2)-4=2n-8, and so on in more dimensions. 

We can check this arithmetic in 3 and 4 dimensions.  We know that the invariant plane for a 

3-d rotation can be specified with 2 parameters, the polar coordinates of the rotation pole.  

Reassuringly, this equals 2n-4 for n=3.  The complete specification of the rotation requires 

additionally the rotation angle, for a total of 3 parameters, equal to n*(n-1)/2.  In 4 dimensions 

we need 4 parameters to specify the first plane and 2n-8=0 to specify the 2nd plane.  This 



makes sense because in 4-d, once we have specified the first plane, there is only one plane 

that is orthogonal to it.  The full specification then requires a rotation angle in each plane, for 

a total of 6 parameters, again equal to n*(n-1)/2.  In 2-dimensions the numbers check 

trivially:there are 2n-4=0 free parameters necessary to specify the invariant plane, and an 

additional 1 rotation angle in that plane. 

So this is all logically consistent, but if we tried to implement a non-redundant version of this 

in FITS most of the symmetry and geometric clarity would be lost.  I note that this IP 

representation is closely analogous to the Euler angle representation in 3-dimensions, which 

also lacks symmetry, although it is reasonably clear geometrically. 

A matrix logarithm (ML) representation 

An elegant but more abstract approach to the SO(n) representation is to realize that the 

matrix S for such a general rotation can always be represented as a matrix exponential, 

         where L is the matrix logarithm of S and the exponential is the obvious 

generalization of the real exponential:            
  

  
  and I is the identity matrix. 

It can be shown that if S is orthonormal, then L exists, is unique modulo 2π in each 

component, and is anti-symmetric, Lij=-Lji ,Lii =0.  I will try to make some of these 

statements plausible below.  Since L commutes with itself and its transpose, the exponential 

is well defined, and                                       , i.e. the exponential of 

any anti-symmetric matrix is orthonormal. 

There are many algorithms in the literature for calculating matrix exponents and logarithms, 

so my suggestion #2 for a representation is to use either the upper or lower triangle of L to 

represent  the general rotation.  This I call the ML representation, and evidently requires 

n*(n-1)/2 parameters, so it is succinct. 

A non-rigorous justification of the above 

Consider our invariant plane description of the general rotation.  In each plane i there is a 

rotation φi . Given some large number N, we can break the total rotation into N infinitesimal 

rotations through angles φi /N.  This defines an infinitesimal rotation matrix SN . Since the 

planes and the rotation angles are all independent of each other, if we apply SN   N times, we 

get back the original transformation:S=(SN) 
N.  But since SN is an infinitesimal transformation, 

it can be written as         where ε is of order 1/N say ε=β/N.  Since SN is itself a 

legitimate orthonormal transformation, the requirement that     
* =I (to first order) 

immediately implies that R= -R* .  Finally then S = (I +βR/N)N .  Then following elementary 

calculus we can regard L=βR as the logarithm of S.  The rest of the properties follow easily. 

Is this a good idea? 

So we could implement this in FITS by specifying as keywords the (n-1)*n/2 components of 

the top-right or bottom-left triangles of L.  Then the full transformation matrix S is the 

exponential function of L, which is relatively easy to compute.  This approach is logically 

consistent, symmetric, and succinct, but has lost a bit of geometric clarity.  Note that in 2-

dimensions this clarity is present.  For a rotation matrix with the usual cos(φ)/sin(φ) 

components, the triangular matrix logarithm is very simple with the off-axis component φ.  



A minimalist suggestion. 

What about the status quo?  The CROTAi convention is poorly defined and not particularly 

logically consistent and is now deprecated. The CD_xy convention is well defined, 

consistent, and well understood but usually redundant in two ways: there are more 

parameters than usually necessary, and some of them, referring to scale factors, are 

redundant with the CDELTi.  Are the small changes that could improve the situation? 

We note that true multi-dimensional rotations seldom make physical sense; the dimensions 

have to be “equivalent” in some sense for this to be the case, and there are seldom more 

than 3 equivalent dimensions, although there might be some relativistic models involving 4.  

We also note that by far the most common need for rotation is around one of the existing 

defined axes, e.g. rotating the “face plane” of a 3-d array around the Z-axis.  So a simple 

upgrade to the current convention that is fairly clear-cut, logically consistent, and eliminates 

the need for CD_xy in many cases would be a CROTA_ab parameter that specifies a 

rotation angle mixing the a- and b-axes, but leaving all others unchanged.  So CROTA_12 

would specify a rotation of the “face plane”. 

You could allow several of these, leading to an Euler-like definition of a more general 

rotation, but this is a bad idea. 

Recommendations 

I wrote this for closure and to clarify some misconceptions about higher-dimensional 

rotations, but as I said above, the urgency to change the status quo is low.  My current 

opinions about doing anything concrete are: 

1. Do not implement anything like the IP (Invariant Plane) representation.  This is too 

confusing for just about everybody. 

2. Consider implementing a ML (Matrix logarithm) representation. Combined with 

CDELTi this provides a clean separation between rotations and scale 

transformations.  CD_xy is then largely unnecessary but should be kept for 

backwards compatibility and to represent non-orthogonal transformations. 

3. If step (2.) is too distasteful, consider a CROTA_xy keyword, which will cover the 

most common rotations in a simple way. 


