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Abstract

We present two algorithms to identify and flag radio frequency interference (RFI) in radio interferometric imaging
data. The first algorithm utilizes the redundancy of visibilities inside a UV cell in the visibility plane to identify
corrupted data, while varying the detection threshold in accordance with the observed reduction in noise with radial
UV distance. In the second algorithm, we propose a scheme to detect faint RFI in the visibility time-channel (TC)
plane of baselines. The efficacy of identifying RFI in the residual visibilities is reduced by the presence of ripples
due to inaccurate subtraction of the strongest sources. This can be due to several reasons including primary beam
asymmetries and other direction-dependent calibration errors. We eliminated these ripples by clipping the
corresponding peaks in the associated Fourier plane. RFI was detected in the ripple-free TC plane but was flagged
in the original visibilities. Application of these two algorithms to five different 150MHz data sets from the GMRT
resulted in a reduction in image noise of 20%–50% throughout the field along with a reduction in systematics and a
corresponding increase in the number of detected sources. However, in comparing the mean flux densities before
and after flagging RFI, we find a differential change with the fainter sources (25σ<S<100 mJy) showing a
change of −6% to +1% relative to the stronger sources (S>100 mJy). We are unable to explain this effect, but it
could be related to the CLEAN bias known for interferometers.
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1. Introduction

At low radio frequencies, below 1GHz, the radio frequency
interference (RFI) environment is quite active and can cause
severe degradation in image quality. RFI can increase image
noise by up to an order of magnitude above the thermal noise
expected for the telescope. The images also usually exhibit
widespread systematics in the form of multiple ripples, which
increase the detection thresholds of faint objects.

There has been much effort directed toward RFI mitigation and
flagging strategies in both hardware (pre-correlation) and software
(post-correlation) regimes. Hardware-based techniques typically
use either some sort of a reference signal to measure the
interference and subtract it from the data (Barnbaum & Bradley
1998; Briggs et al. 2000; Fridman & Baan 2001; Hellbourg
et al. 2014) or use specialized hardware such as additional
antennas (or antenna arrays) to null sources of interference along
certain directions (Van Der Veen & Boonstra 2004; Kocz
et al. 2010). Among the software-based tools there are techniques
that attempt to excise the RFI from the data i.e., recover the
uncorrupted visibilities (Golap et al. 2005; Athreya 2009; Pen
et al. 2009; Offringa et al. 2012a) and methods to remove—i.e.,
flag—the affected data (Bhat et al. 2005; Middelberg 2006;
Winkel et al. 2007; Offringa et al. 2010, 2012b). The software
methods have an advantage in that they can be applied to both
new as well as archival observations.

In general, a single mitigation strategy has not proved to be
very effective, as different sources of RFI leave different
signatures in the data. Persistent RFI appears as strong fringes
in a baseline, and the amplitude and phase of these fringes can
change as a function of both time and frequency. Broadband
RFI can affect the entire baseline and cause fluctuations in
antenna gain and are much more difficult to characterize and
eliminate. Intermittent RFI, localized in time and frequency,
look like “hotspots” in the visibility data and cause large-scale
ripples in the image plane.

We describe here two new methods to identify and flag
intermittent RFI, which have consistently yielded high-
sensitivity images when applied to a variety of GMRT
observations.

2. Description of the Algorithms

The measured visibilities in any polarization in the presence
of RFI signal can be written as

* h= + +( ) ( )V G G V V e 1o
i j ij ij

if
ij
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where ij are antenna indices, Vij
sky are the visibilities due to sky

emission, Vij
RFI is correlated RFI, eifij is the fringe stopping

function (and the only polarization independent factor), and ηij
is additive noise in the system. Gi and Gj are the complex
antenna gains, which can be affected by strong RFI even if the
RFI is uncorrelated. eifij will stop the fringe of the cosmic
source at the phase center but introduces a corresponding fringe
on a stationary (terrestrial) source, like RFI. Athreya (2009)
used the form of eifij to excise RFI while recovering the
visibilities.
VRFI can be orders of magnitude larger than Vsky and vary

with time, frequency, and baseline. The second term in the
above equation causes poorer solutions during self-calibration
and introduce systematic errors in the image.
In this paper, we focus on intermittent RFI, which are

localized in the visibility space. These localized hotspots will
result in large-scale ripples across the image. We explore two
different visibility spaces, viz. the binned UV plane of the
entire interferometer and the time-channel (TC) plane of a
single baseline, to locate and flag corrupted visibilities. The two
algorithms are individually called GRIDflag and TCflag,
respectively, and are combined into an integrated RFI flagging
package called IPFLAG.
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2.1. RFI Flagging in the Gridded UV Plane—GRIDflag

Visibilities sampled by a baseline form a continuous track
across the UV plane. The tracks of different baselines are
distributed irregularly and usually sparsely. Imaging algorithms
compensate for this by interpolating these sampled visibilities
onto a regular grid to be able to use the fast Fourier transform
(FFT) algorithm (Thompson et al. 2001). This gridded UV
plane is fundamental to almost all imaging algorithms, and the
sampled cells within the UV grid define the UV coverage of the
observation. The size of the UV cell is related to the field of
view being imaged. A single baseline will in general contribute
multiple visibilities to a particular cell. These multiple
visibilities usually lie within a short time interval of each
other, unless the observation spans multiple epochs. Multiple
baselines may contribute to the same cell, but at different times.

All of the visibility samples within a cell approximately
measure the same celestial information, but differ in the RFI
environment that they encountered due to different times of
observation. We propose to use this dichotomy to identify and
flag RFI-affected visibilities.

The first step of the GRIDflag algorithm is to bin the
visibilities based on their UV coordinates. The size of a UV-bin
is similar in size to the UV cell used while imaging. We assume
that in the absence of RFI, the differences between the
visibilities in a UV-bin are dominated by system temperature
and not source structure. This is valid when applying the
scheme to the residual visibility plane obtained after subtracting
the strongest sources. Thus, any differences between the
visibilities within a UV-bin component that are well in excess
of the system noise can be ascribed to RFI. The visibility
function must be locally smooth for any realistic sky intensity
distribution. Therefore, one can combine data from adjacent
UV-bins to calculate statistically secure thresholds to iden-
tify RFI.

The standard radio astronomy imaging procedure consists of
pre-calibration flagging and several rounds of imaging and self-
calibration followed by (often manual) residual visibility
flagging procedures available in CASA/AIPS (Greisen et al.
2003; McMullin et al. 2007). Typically, observers using the
GMRT 150MHz band produce images with RMS noise of
1.5–5 mJy beam−1 by using these standard procedures. We
have routinely reached below 1 mJy beam−1 using the pre-
calibration RfiX procedure (Athreya 2009) to excise persistent
broadband RFI. We applied the algorithms described in this
paper at the end of this standard procedure. Our recipe is as
follows:

1. Apply the RfiX algorithm and the standard CASA/AIPS
calibration, imaging, and flagging process to obtain the
residual visibilities.

2. Allot the visibilities into bins in the UV plane. These bins
are approximately the same size as the UV-cells used for
gridding by imagers. Calculate the robust median and
standard deviation (with respect to the median) of all the
residual visibilities falling within each UV-bin.

3. Partition the UV plane into several annuli and calculate
RFI thresholds as a function of UV radius. This is
because both RFI and source signals in the residual
visibilities tend to decrease with radial distance. The
choice of the annulus width is not critical and is decided
by the competing requirements of tracking the change in

RMS with radius and having sufficient UV-bins within an
annulus.

4. Use the distribution of medians in an annulus to exclude
highly contaminated UV-bins while determining the
smoothed median background surface. Note that this
will be a function of UV radius.

5. The smoothed median surface and the local standard
deviation is used to identify RFI-affected data within each
UV-bin through any thresholding scheme—we used the
visibility RMS to define the threshold. One can set this
threshold either using data from within the same UV-bin
or by combining other UV-bins in the immediate
neighborhood.

6. Apply these flags to the original, un-smoothed and un-
binned data, and redo the entire process of imaging and
self-calibration.

This procedure largely preserves the UV coverage for two
reasons: the flagging in each UV-bin is processed separately
and in most cases at least a few visibilities in each UV-bin
survive the process. Second, this procedure allows for smooth
variation of standard deviation even within an annulus. Though
we have yet to implement it, the variation of standard deviation
may be compensated for by differentially weighting the
visibilities.
As a matter of detail, only one-half of the visibility data is

recorded, as the other half is simply a Hermitian conjugate.
Therefore, the visibilities have to be appropriately conjugated
to ensure that they all lie within the same half plane. One will
also need to extend the data into a few UV-bins in the other half
for statistics at the edge.
We applied this procedure separately and successively for

the amplitude, real, and imaginary components in the RR and
LL and stokes V polarization modes.

2.2. RFI Flagging in the TC Plane—TCflag

RFI may be identified in the residual visibilities in the TC
plane of individual baselines. However, the residual TC plane
often has multi-component sinusoidal patterns caused by RFI
or by improper subtraction of (strong) sources due to several
reasons (e.g., an azimuthally asymmetric antenna primary
beam, time dependent pointing error, uncorrected gain
fluctuations, etc.). These visibility fringes tend to inflate
estimates of the standard deviation, thereby increasing the
threshold above which RFI (localized in both time and
frequency) can be detected. Therefore, we devised a procedure

Figure 1. Flowchart describing the data analysis recipe that was used to obtain
the final data sets shown in the comparisons below.
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to eliminate these fringes prior to estimating the sigma
threshold for flagging RFI. The scheme is as follows:

1. For each baseline and polarization, take a two-dimen-
sional Fourier transform of the TC plane within a window
to obtain the group-delay–delay-rate (GD–DR) plane.
This window has to be large enough to cover a substantial
fraction of the fringe period while being smaller than the
period over which the amplitude of the fringe may vary.

2. Iteratively sigma clip all components above a threshold in
the GD–DR plane, thereby eliminating the corresponding
fringes in the TC plane.

3. Inverse Fourier transform to obtain the fringe-free TC
plane.

4. Identify RFI-affected data using any threshold algorithm
(e.g., sigma clipping) in the fringe-free TC plane.

5. Apply the flags to the original data, and restart the process
of imaging and self-calibration.

This procedure works because the signatures of source
structure and localized RFI differ in the residual TC and GD–
DR planes. Any RFI that is localized in time and frequency will
be dispersed over the GD–DR plane, whereas a sinusoidal

fringe due to source structure will show up as compact peaks in
GD–DR.
Because the fringes in the residual visibilities arise primarily

from incorrectly subtracted sources, we tried window sizes of
5–20minutes, with success. We settled on a window size of
10 minutes for all sources, as it also matched the scan breaks in
our data. This value does not need to be finely tuned. If the
fringe were to change in amplitude or frequency, this will
smear the Fourier signal over several pixels resulting in lower
efficiency of RFI detection. However, one can also run this
procedure using several windows sizes in decreasing succes-
sion. This method aims to remove the fringes associated with
improperly subtracted sources in the residual visibilities. The
highly efficient, modern FFT algorithms work well for all
window sizes; the process of FFT and it’s inverse results in
discrepancies only of the order of double precision computer
numbers (∼10−12).
Finally, this algorithm can in principle be applied at any

stage of image processing. Even the presence of real source
fringes in TC data will not result in artefacts, as we only modify
the flags of the original, raw data.

Figure 2. Comparison of the median binned UV plane before and after GRIDflag. The grayscale represents the median flux density in a 10λ×10λ UV-bin.
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Figure 3. A comparison of the time-channel plane RFI flagging effectiveness of different algorithms. The plots show that TCFlag is competitive with the others while
using a different procedure to estimate the true background noise in the time-channel plane of a baseline.

Figure 4. The plots show the fractional flux density discrepancy between our data and TGSS-ADR for point sources common to both. The solid line shows the mean
fractional discrepancy (corrected to zero by suitable scaling) and the dashed lines indicate the standard deviation of the scatter for sources above and below 100 mJy.
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2.3. Observations and Parameters

All of the observations were done with a bandwidth of
16MHz in the 150MHz band and a spectral resolution of 62.5
or 125kHz. The data was recorded with an integration time of
2s. The flow of analysis is shown in Figure 1.

We used the following parameters in IPFLAG:

1. UV-bin size (GRIDflag): 10λ, from the field of view at
150MHz.

2. Smoothing window for median visibility background
(GRIDflag): 5×5 bins.

3. UV-bin annuli width (GRIDflag): 3, 3 and 6.5kλ
4. Fourier transform window size (TCflag): bandwidth×

10 minutes.
5. Fourier peak detection threshold (TCflag): 3× RMS

noise
6. RFI threshold (both): 3× RMS noise

We transferred the RFI flags from IPFLAG to the raw data,
and repeated the entire process of imaging, self-calibration,
residual flagging, and flag transfer. Finally, the data was again
self-calibrated and imaged for the final result (see Figure 1).
The final image covers 6°.25×6°.25 with a pixel size of 4 5.
The sources were extracted from the images using the PyBDSF
source finder (Mohan & Rafferty 2015), running with identical
parameters across all images.

Stand-alone calibration using the standard CASA/AIPS
recipes resulted in flux density scale errors of up to 15%. This
becomes important while comparing the absolute noise in an
image, though it does not affect the relative change in noise
with the application of RFI flagging procedures. We therefore
anchored our flux density scale to TGSS-ADR (Intema
et al. 2017) using the sources in common with the two
observations. The fractional discrepancy in source flux
densities is shown in Figure 4. For reasons we do not
understand, but which may have to do with something similar
to CLEAN bias (Condon et al. 1998; Cohen et al. 2007), we
find a flux-dependent fractional discrepancy between TGSS
and our flux densities. The fractional discrepancy changes
between −0.5% and −9% between sources above and below
100 mJy.

3. Efficacy

We applied IPFLAG to real data from the GMRT at
150MHz and compared the results with and without the same.
The 150MHz band of the GMRT is important for a variety of
astrophysical phenomena but is under-utilized because of the
presence of strong RFI. We felt that this comparison using real

data would be a more realistic appraisal of the algorithms than
simulations with well-behaved noise.
We targeted five fields—VIRMOSC (GMRT observation

code: 14RAA01), J1453+3308 (27_063), J1158+2621
(27_063), A2163 (16_259), and 3C286 (TGSS data, Intema
et al. 2017).
3C286—A commonly used flux density calibrator source,

which is compact and has a flux of 26Jy at 150MHz. The field
is dominated by point sources with almost no extended
emission. However, for reasons that are not understood, this
field showed a reduced flux density in TGSS-ADR by ∼25%
(see Intema et al. 2017).
VIRMOSC—A field dominated by point sources. The

strongest point source in the field is ∼1.7Jy while it has a
single diffuse (4 arcmin) source of 300 mJy.
J1453+3308 and J1158+2621—Double-double radio

galaxies, with diffuse outer lobes spanning 4′–7′.
A2163—This is a galaxy cluster with a 14′ low surface

brightness radio halo.
Figure 2 shows examples of the elimination of the RFI

hotspots from the median binned UV plane. Only the upper
half of the UV plane is shown in the plot; the lower half is
simply the Hermitian conjugate. The band of higher intensity
seen at U≡[−100 λ, 100 λ] (e.g., J1453+3308 in Figure 2)
arises from the inability of the RfiX algorithm to mitigate RFI
in regions where the fringe-stop frequency is close to zero.
Figure 3 shows a comparison between TCflag (described here)

and existing flagging tools RFlag, TFCrop (both implemented in
CASA), and AOFlagger (Offringa et al. 2010, 2012b). Our
algorithm TCflag is competitive with the others while using a
different procedure to estimate the true noise background.
The total data flagged by IPFLAG was 2.4%–15.7%, and the

corresponding loss in UV-bins was 1.2%–3.9%. Table 1 shows
that the change in the dirty beam parameters is small before and
after IPFLAG, confirming that our procedure did not change
the UV coverage despite the loss of a substantial amount of
data. We used the same restoring beam before and after
IPFLAG in all of our targets. The post imaging comparisons
are plotted in Figure 5.
Point source fluxes—The plots in Figure 5(a) show the

fractional change in flux density (FCF) as a function of
the original (unflagged) flux density. These flux densities were
compared before primary beam correction. We analyzed the
FCF in three flux density regimes, viz. S>100 mJy, 25σ<
S<100 mJy, and S<25σ. 25σ is the flux density above
which source counts are typically ∼90% complete (e.g., Intema
et al. 2017) and as such defines the limit of the reliability of
source catalogs for statistical studies. The FCF ranges from
−1% to +6% for the strongest sources. The increase in flux

Table 1
The Effect of IPFLAG on Image Parameters

Source Name Without IPFLAG With IPFLAG

Major Axis Minor Axis NO σO Major Axis Minor Axis Nf σf Flagged Bins % Flagged Points %

3C286 18.4 13.1 374 1.12 18.9 13.0 403 1.01 1.2 2.4
VIRMOSC 23.9 15.9 846 0.55 25.6 15.8 949 0.42 1.7 6.4
J1453+3308 20.2 14.5 862 0.46 18.9 14.1 870 0.38 2.7 15.7
J1158+2621 19.0 15.1 819 0.72 18.9 14.6 844 0.55 3.9 15.5
A2163 28.9 14.3 419 1.30 31.6 15.8 493 1.06 1.5 3.9

Note.The values of the dirty beam major and minor axes in arcsec, median image noise σo and σf in mJy beam−1, and the number of detected sources No and Nf are
listed for each field. We have also listed the percentage of UV-bins lost and visibility data flagged after IPFLAG.
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may be expected due to an improvement in calibration after the
RFI has been flagged. The mean FCF for intermediate sources
is smaller than that for the strong sources by −6% to +1%.

This trend in reduction of flux density continues to the faintest
sources detected. We saw this reduction with all of the other
flaggers as well (AOFlagger, RFlag, and TFCrop), and both of

Figure 5. Comparison of images generated using IPFLAG, AOflagger, and with neither. Each row corresponds to a different target, while the five columns show, from
left to right, (a) fractional change in flux as a function of original (pre-flagging) flux—only for IPFLAG; the solid line shows the median change separately for the
strong (S>100 mJy), intermediate (25σ<S<100 mJy) and faint (S<25σ) sources; (b) image noise as a function of radial distance from the phase center; (c)
image noise as a function of neighborhood source flux; (d) histogram of image noise values from across the field; and (e) integral source counts. The results for
IPFLAG, AOFlagger, and “Neither” are shown in orange, pink, and blue, respectively. Application of IPFLAG resulted in the detection of fainter sources as evidenced
by the extension of source counts to lower flux densities.
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the source detection algorithms used (PyBDSF and aegean;
Hancock et al. 2012; Mohan & Rafferty 2015). Suspecting that
this discrepancy may be a result of a systematic shift in the
background level, we analyzed the residuals in the immediate
vicinity of the detected sources before and after flagging but did
not detect any such systematic offsets. In summary, this effect
is independent of the RFI flagging algorithm used; it does not
seem to affect the flux density scale, as the brightest sources are
not affected; it must have something to do with the CLEAN
algorithm that we use, which comes with CASA. The change in
flux density of the intermediate sources is much smaller than
the reduction in image noise. At the moment, we have no
explanation for this effect, but it may be something similar to
the CLEAN bias whose impact is most obvious for the faintest
sources (Condon et al. 1998; Cohen et al. 2007). We recall that
a similar effect was observed while comparing our flux
densities with that of TGSS-ADR in Figure 4.

Image noise as a function of radial distance—In general, the
image noise is known to reduce with radial distance. A
200×200 pixel box was used to calculate the robust RMS at
625 locations across the image. The plots in column (b) of
Figure 5 show both the scatter and the trendline for the
unflagged and IPFLAG data; the AOFlagger data is only
represented by the trendline in the interest of clarity. The plots
show that IPFLAG has reduced the noise all across the image.

Image noise as a function of source flux—Column (c) of
Figure 5 shows a plot of the image noise plotted against the
cumulative flux density within each of the 625 boxes

mentioned earlier. Normally, a higher level of local artefacts
is expected in the presence of strong point sources.
Noise Histogram—Column (d) of Figure 5 shows the

histogram of the noise across the field. There is a clear shift
in the distribution of RMS noise to lower values.
Source Counts—The ultimate metric for image improvement

is an increase in source detection at lower flux levels.
Figure 5(e) shows that IPFLAG passes this criterion by
detecting faint sources to the expected depth. The plot shows
the cumulative histogram of the number of sources detected as
a function of flux density, i.e., N(> S), which shows clearly that
the excess detections come from lower flux densities. Table 1
provides the number of sources detected for each field. In all
cases, IPFLAG has resulted in the detection of more sources.
Artefacts—Figure 6 shows the reduction in artefacts in the

field after the application of IPFLAG.

4. Conclusions

The IPFLAG procedures have worked well across a variety
of data sets, substantially reducing the image noise and
detecting fainter sources. While we tested the algorithms on
GMRT data, they should be as effective for any interferometric
array in which the UV plane contains a large number of
visibility samples.
We are unaware of any other algorithm that approaches RFI

flagging in the manner that GRIDflag does. TCflag is similar to
several other algorithms like AOflagger, TFcrop, Rflag, etc.,
which flag localized RFI in the TC plane of an individual

Figure 6. A comparison of artefacts in the inner parts of images (1800×2700 arcsec2, pixel size 4 5)—except for the A2163 field where an off-center source is
shown—made with and without the application of IPFLAG. The contours levels are indicated below each plot. The unit contour level corresponds to three times the
local standard deviation of the IPFLAG image in each case. All fields show a substantial reduction in artefacts on application of IPFLAG.
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baseline while differing in the manner of estimating the
background. The combined application of GRIDflag+TCflag,
which are components of our RFI pipeline IPFLAG, outper-
forms the other algorithms. AOFlagger was the closest in terms
of performance, and we recognize that a more experienced user
of AOflagger may be able to obtain better results by optimizing
its many tuneable parameters for GMRT data.

On the other hand, IPFLAG has only six tuneable parameters
in total. These values did not require much optimization, and
the same values were used for all of the fields tested. In fact,
of the six, the UV-bin size selects itself from the field of view,
and the three noise thresholds were set to “universal” default
values (at 3σ). The width of the UV-annuli was set by simply
distributing the visibilities approximately equally across the
three annuli used. While the values may require some changes
for other frequencies and interferometers, we believe that they
will not need to be tuned for different fields.

Upon application of IPFLAG, our images have consistently
reached an RMS noise <1 mJy beam−1, with a corresponding
increase in source detection; typical GMRT 150MHz images
have hitherto reached an RMS noise of 1.5–5 mJy beam−1,
with exceptional effort yielding 0.7 mJy beam−1 (e.g., Ishwara-
Chandra et al. 2010). In three of the five images, we have
reached an image noise of 0.38–0.55 mJy beam−1, which is
only a factor of ∼2 above the theoretical confusion limit. Even
in the case of 3C286, an exceptionally bright flux density
calibrator, we have reached 1.0 mJy beam−1, and the peak to
RMS noise ratio is in excess of 21000, which is unprecedented
for GMRT 150MHz images.

The fact that GRIDflag reduces the loss of UV coverage in
the gridded UV plane means that the reduction in RFI is not
offset by a corresponding increase in the sidelobes of the
synthesized beam. The efficacy of the algorithm depends on the
level of redundancy in the gridded visibility plane. The GMRT
has good coverage of the shorter spacings, particularly at low
frequencies (Swarup et al. 1991), and this coverage is due to
get better with the upgraded GMRT (Gupta et al. 2017).

The algorithms also worked at higher frequencies (325 and
610MHz), but the improvement was not as substantial. We
think that this is because of the weaker RFI environment at
these frequencies. However, even these weak RFI environ-
ments could substantially impact the performance of ultra-deep
imaging projects like the MIGHTEE (Jarvis et al. 2017).
Furthermore, we believe that GRIDflag is particularly tailored
toward multi-epoch observations such as the MIGHTEE,
wherein the same UV grids are sampled day after day.

These algorithms will not work in the presence of persistent,
broadband RFI. However, other algorithms are available for
these situations (e.g., Athreya 2009, used in this paper). We
think that the issues that remain to be addressed are the
nonisoplanatic ionosphere and an asymmetric antenna primary
beam. Applying our algorithms in conjunction with schemes

like SPAM (Intema et al. 2009) should yield further
improvement of image quality.

We thank the staff of the GMRT who have made these
observations possible. GMRT is run by the National Centre for
Radio Astrophysics of the Tata Institute of Fundamental
Research. Discussions with Drs. Sanjay Bhatnagar and
Ishwara-Chandra contributed to this work. We thank the
referee for many suggestions that have considerably improved
this manuscript.
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