<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p>Gang-<br>
    </p>
    <p>I'm going to try to revive interest in a broadened, but still <i>~purely
      </i><i>geometrical explanation</i>.   In particular, I wonder if
      we appreciate the true incongruities in the realized optical
      geometry as well as we think we do, at least as regards the net
      effective rotation of the feeds on the sky near the zenith. 
      Apparently not quite, and more than just simple Az axis tilts
      could be relevant (yet still without going behind the feed to
      wires and software).  I.e., where is the <i>primary</i> boresight
      actually pointing?<br>
    </p>
    <p><b>Regarding Az tilts (for starters):  </b>The properties of the
      symmetries Rick has shown are entirely consistent with
      (differential) tilts in the AZ axes by a few arcmin.   E-W tilts
      cause the even symmetry (time offsets in geometry calculation can
      do this to...).  N-S tilts will cause the odd symmetry.   It was
      casually asserted early in the conversation that the peculiar
      tilts (due to sag of pads, etc.) aren't big enough for this.  Is
      there a real quantitative basis for this claim?    <br>
    </p>
    <p>The basic geometrical interpretation is really a matter of
      answering the following question:  "How is the antenna rotating
      around the direction to the source in general, and especially
      nearer the zenith?"    Do we really think we know this near the
      zenith at levels comparable to the scale of tilts required for the
      observed effect?   Rick correctly stated "parallactic angle is not
      a function of polarization", but misapprehension of the realized
      parallactic angle evolution (in geometric models used to
      correlate/calibrate) will have opposite phase effect on the R and
      L polarizations.  I.e., any effective rotation of the feed on top
      of the assumed geometric model of the system will advance the R
      phase and retard L's, or vice-versa.  This is what Rick's plots
      show, differentially with the refant.   So, does the correlator
      phase model include terms for the peculiar tilts in each
      antenna?   If not, then the peculiar tilts <i>must be </i>introducing
      these effect at some level, i.e., at least some of the observed
      effect is due to the Az axis tilts.<br>
    </p>
    <p><b>But, if you need more effect than mere Az tilts can supply, my
        main <i>new </i>point is <i>primary boresight pointing
          accuracy</i>:</b>   Beyond the simple peculiar tilts, we are
      actually also assuming that the antennas point precisely on their
      <i>primaries' </i>optical boresights toward the source.   Is this
      true?   The (joint?) optimization of pointing, focus and
      collimation is presumably respectably optimizing <i>net forward
        sensitivity</i> (and somehow averaged between R and L to fall
      between between the squinted beams, which we presume <i>is</i>
      the primary Stokes I boresight).   This broad optimization should
      tend toward, but by no means necessarily guarantee, that the
      pointing <i>of the primary </i>(which is what is driven by the
      motors) is precisely toward the source.   Indeed, is there any way
      to objectively guarantee (i.e., constrain) the primary boresight
      in the optimizations we perform for the optics?   In particular, I
      wonder if the collimation optimization does, in fact, push us
      distinctly (but subtly..., and enough?) <i>away</i> from the
      primary's boresight?     I.e., to what extent do we optimize
      collimation by moving/pointing the feed horns themselves (at the
      few arcmin level), cf just adjusting the _net_ pointing of the
      mechanical optics (forward of the feed) to ~compensate and
      balance?   A few arcmin offset only negligibly affects the
      primary's forward gain, so no leverage there...   And it is
      interesting to note that a lot is bootstrapped between and among
      bands in achieving the general combined optimization of all feeds
      across the sky (i.e., everything pegged to whatever uncompensated
      mechanical offsets exist in the X-band feed?).  Not to mention the
      likely relevance of sub-reflector rotation tricks (at higher-freq
      bands) to the net geometry of the optics, which speaks to the
      level at which we need to account for loss of the rigidity
      implicit in the simple geometric description.....  In short,
      optimization of the whole signal path is almost certainly not
      optimization of each optical path component in isolation, and in
      particular, <b><i>the drive motors are probably effectively
          moving the primary for a point on the sky that is _not_
          precisely the target source coordinates, such that the net
          rotation around the direction to the target isn't quite the
          right one</i></b><b>.</b>  And this will be most noticeable
      nearer the zenith, of course, in the relative R-L phase<i>,</i> in
      a manner very like the simple Az tilts.  The main drawback to this
      explanation is that we might have expected more band-dependence of
      the effect, unless we are dominated mainly by the bootstrapping
      from one band, or something else systematic (per antenna, not
      band) about the effective boresight directions of (aging) VLA
      antennas.....<br>
    </p>
    <p>(I pose the above based on some ongoing off-and-on (mostly off,
      lately) experience studying similar questions for ALMA, where, in
      fact, they have <i>deliberately</i> chosen to translate (rather
      than tilt, as designed) the subreflector to reach off-axis feeds
      (on 2 feed circles).  This means they are deliberately <i>moving
        off the primary boresight</i>.  And since we don't really know
      the subreflector zero points in tip/tilt and translation, I don't
      think we really know how far off the boresight ALMA antennas
      actually are...   So, they've unintentionally compromised the feed
      orientation calculation in calibration for a (measured, memo'd)
      very small net loss in forward sensitivity.)</p>
    <p><b>Regarding OTF pointing updates:</b>   Also, I think we expect
      blind pointing to be poor near the zenith, by which I mean we
      don't expect our ordinary optimizations to be very good....   I
      wonder if the amplitudes (in particular, the <i>relative</i> R/L
      amp) might give a clue about how far from the nominal pointing we
      have wandered (on top of the offsets introduced ~deliberately
      through nominal optimizations described above).   Also, manually
      tweaking up the pointing on top of the model at, say, HA ~ -1h
      might actually be an effectively arbitrary "correction" to a point
      decidedly off-source for the primary boresight nearer the
      zenith....</p>
    <p><b>Regarding measuring cross-hand phase directly:  </b>Examining
      truly measured cross-hand phases will definitely be interesting. 
      Note that this will be a measurement relative to the (simple)
      parallactic angle calculation used to make the sky nominally
      stationary in rotation.  This calculation does not include all of
      the inhomogeneities described above (true axes tilts, effective
      optical path offsets), and is also subject to the coordinate
      system chosen for the parang calculation.  I think both AIPS* and
      CASA have traditionally used the geocentric latitude (not
      geodetic) for the parang calculation, which effectively behaves
      like a ~10.7 arcmin tilt to the North.  This creates a several
      degree position angle error near the zenith (twice this in R-L
      phase) of the odd symmetry, and is conveniently nulled by the
      difference measurements Rick has shown so far (owing to the fact
      that VLA antennas are nominally mounted on the earth in
      parallel).  Indeed, it is the scale of this alone that keeps me
      scratching my head about just the ordinary tilts of a few arcmin
      being enough to cause at least some of the effect Rick observes.  
      So, don't be surprised if the actual cross-hand phase
      (effectively, of the refant) looks worse!</p>
    <p>(*I'd welcome Eric's correction on this point, if I'm wrong about
      this.)</p>
    <p><b>Regarding 'over-the-top':  </b>I think over-the-top might
      ~decouple Az tilts from internal (feed-forward) optics, since the
      net primary boresight pointing error is probably different for
      over-the-top, but I haven't thought very carefully about this....
        Hmmm, I think net feed rotation is in the opposite direction for
      over-the-top, so I don't think you get the same thing for the Az
      tilt effect--won't it reverse the sign of your differential
      phases?   If only a sign reversal, then that test tends to point
      to Az tilt as the culprit.  But there are probably also different
      boresight pointing effects, so you'll sorta measure the relative
      scale of those...   And bending wires can also still
      contribute....<br>
    </p>
    <p>Cheers,</p>
    <p>George</p>
    <p><br>
    </p>
    <p><br>
    </p>
    <div class="moz-cite-prefix">On 3/27/22 21:25, Rick Perley via
      evlatests wrote:<br>
    </div>
    <blockquote type="cite"
      cite="mid:4711EC33-81F8-445E-9000-8E3DDDA0299F@nrao.edu">
      <pre class="moz-quote-pre" wrap="">Well — I certainly didn’t think I’d get so many suggestions!  A healthy sign.  

Regarding AC/BD:  Sadly, the data taken used only the AC side.  

The thinking seems to point to the antenna, rather than some geometrical origin.  To separate these effects, perhaps tracking 3C286 through transit in two different ways may help — (a) in the normal mode, and (b) using ‘over the top’.  If the effect is due to geometry (related to parallactic angle), these two should give the same results.  If due to the antenna, the different elevations (86 and 94 degrees at transit) should clearly show up as giving different magnitudes.  

I agree that software is unlikely — but to be sure, I can generate these plots with no calibration at all (since these are differential plots, the atmosphere and most electronics effects should cancel out).  

I’ll plot these phase differences against elevation — if a true elevation effect, all traces should lie on the same curve.  (I should have done that on Friday!).

Regarding the choice of reference antenna — ea10 looks ‘reasonable’.  I will use a different antenna as reference (clearly, one of the ‘odd’ ones) — but the results are easy to anticipate — the current plots will have the new reference antennas’s curve added.  So I can hope that all (or most) of the ‘odd’ profiles will head to ‘zero’ (no elevation/HA effect), while the ‘even’ profiles will change in a way that I hesitate to predict … (depends on the magnitude of the ‘odd’ profile being added to the large ‘even’ profile).  

I probably won’t be able to do these checks until Monday afternoon.  

Rick



Sent from my iPad

</pre>
      <blockquote type="cite">
        <pre class="moz-quote-pre" wrap="">On Mar 25, 2022, at 10:23 PM, Craig Walker <a class="moz-txt-link-rfc2396E" href="mailto:cwalker@nrao.edu"><cwalker@nrao.edu></a> wrote:

This is an interesting puzzle.  Here are a few thoughts on the problem:

The higher dec sources have a very high rate of change of Azimuth and PA at transit.  The sharp peak in the R-L phase effect makes me think it is related.  The effect at the antennas with the single peak is much larger than the effect with the two peaks (one negative).  If all antennas, including the reference, have a peak at transit but of random sign and with slight and maybe random offsets from actual transit, you might get what is seen.  When an antenna's peak is of opposite sign from that of the reference antenna, the effects add and you get a single large peak.  When they are of the same sign, so they try to cancel in the difference, the slight offsets from actual transit give the two peak character.

The fact that the effect is scattered randomly over the array (really true?) suggests that it is some hardware effect not related to observing geometry.  Also it may be important to remember that the pads are tilted so that Az, El, and PA are the same at all antennas despite the Earth curvature over the array.

My first thought was that this all points to the azimuth cable wrap. But the fact that the values far from transit are the same on both sides doesn't match this too well.

With the VLBA, we get an amplitude effect that looks a bit like this at the point when the source is off the end of a baseline and the fringe rate goes through zero.  Then any clipper offsets, pulse cal tones or other signals that are the same at the sites correlate.  Could there be something in the VLA system of the sort that acts at transit?  That is definitely grasping at straws.

Definitely a puzzle.

Cheers,

Craig



</pre>
        <blockquote type="cite">
          <pre class="moz-quote-pre" wrap="">On 3/25/22 11:53 AM, Rick Perley via evlatests wrote:
    This is a long circular -- apologies to all, but the subject is a bit complex ...
    Many will remember a meeting called by Frank a few years ago where the subject was the very peculiar phase differences seen between the RCP and LCP phases when observing a source passing by the zenith.  The general conclusion was that 'we have no idea of what is going on'.
    In preparation for an upcoming trip, I am reviewing my extensive observations, taken over the past decade or more, from projects with the goal of measuring, and implementing the 'absolute' D-terms.  (In other words, dispensing with the usual method of measuring the antenna polarizations with respect to an assumed standard (usually zero)).
    One observation, taken in January 2019, is especially well suited to this task.  I observed four sources, through transit, for five hours, at three bands -- L, S, and C.
    The four sources were:
    3C286   dec = 30.5
    OQ208  dec = 28.5
    3C287    dec = 25.2
    3C273    dec = 2.0
    Note that OQ208 is completely unpolarized, while the others have varying degrees of polarization.  All sources transit south of the zenith.
    The data are of exceptionally good quality.  The array was in the C configuration.
    The attached plots show the R-L phases, using ea10 as the reference antenna.  Note that these are *not* the RL or LR correlation phases -- they are the differences between the antenna phase solutions using the RR and LL data, using ea10 as the reference.  This means the R-L dependence of ea10 is impressed on all the other antennas.  We are looking at differentials.
    The plots show two antennas -- ea01 and ea12, which represent the two different symmetries seen in the data.  The x-axis is HA -- plots against time and parallactic angle jumble the results -- the dependencies seen are purely a function of HA.
    Colors:  3C286 is red, Light green is OQ208, blue is 3C287, dark green is 3C273.
    ea01 is of the even symmetry type.  Antennas 1 3 5 6 8 15 and 22 have this symmetry.
    ea12 is of the odd symmetry type.  All other antennas show this, with the same sign -- positive difference before transit, negative difference after, with the possible exception of ea18. (For this antenna, the amplitude of the effect is very small, so the signature is hard to discern).  Three antennas were out of the array at the time:  7, 24 and 28.
    Key points:
    1) The phase signatures are *identical* for each band.  Same width, same height, same values, same symmetry.
    2) The magnitude of the effect is sharply dependent on how close the zenith the source transits.  For 3C273, the effect is almost completely absent.
    3) The effect is independent of source polarization.  OQ 208 has less than 0.1% polarization, and shows the same symmetry signature as the strongly polarized sources 3C286 and 3C287.
    4) The location of the antennas is not related to the signature -- the 'even' antennas were located all over the array: W6, W18, E14, N6, N1, E12, and W12.
    One conclusion is clear:  The effect has nothing to do with the beam squint.  And it is very hard to see how differences in the antenna pole direction can do this -- the required tilt magnitudes are just unreasonable.  And in any event, the parallactic angle is not a function of polarization -- it's an antenna quantity.
    I have shown these data to two of our serious pundits (Barry and Steve), hoping for some insight.  None was forthcoming.  We are completely stumped.  It seems clear that the signatures are geometric in origin -- but how does this translate into such a clear signature in the phase *difference* between polarizations?
    Any and all suggestions will be taken seriously!
    Rick
_______________________________________________
evlatests mailing list
<a class="moz-txt-link-abbreviated" href="mailto:evlatests@listmgr.nrao.edu">evlatests@listmgr.nrao.edu</a>
<a class="moz-txt-link-freetext" href="https://listmgr.nrao.edu/mailman/listinfo/evlatests">https://listmgr.nrao.edu/mailman/listinfo/evlatests</a>
</pre>
        </blockquote>
        <pre class="moz-quote-pre" wrap="">
-- 
------------------------------------------------------------------
   R. Craig Walker            Scientist Emeritus
   1305 Vista Dr.             Array Operations Center
   Socorro NM  87801  USA     National Radio Astronomy Observatory
   <a class="moz-txt-link-abbreviated" href="mailto:cwalker@nrao.edu">cwalker@nrao.edu</a>           P.O. Box O
   Phone  575 835 3972        Socorro, NM 87801  USA
                              575 835 7247
------------------------------------------------------------------
</pre>
      </blockquote>
      <pre class="moz-quote-pre" wrap="">

_______________________________________________
evlatests mailing list
<a class="moz-txt-link-abbreviated" href="mailto:evlatests@listmgr.nrao.edu">evlatests@listmgr.nrao.edu</a>
<a class="moz-txt-link-freetext" href="https://listmgr.nrao.edu/mailman/listinfo/evlatests">https://listmgr.nrao.edu/mailman/listinfo/evlatests</a>
</pre>
    </blockquote>
  </body>
</html>