Switch Repeatability Test


Switch Repeatability Procedure

- Select Switch Position 1
- Calibrate S21 Switch Position

1 as a through path (reference)

- Switch to any other position then back to Switch Position 1
- Record data

Dow-Key 545JK Non-latching Switch


- Isolators used in test are good over 8-16 GHz range
- Size of the ripples is related to the VSWR of the switch as: $-10^{*} \log \left(1-|\rho|^{2}\right)$ where $\rho$ is the reflection coefficient
- Phase repeatability not shown but much better than $1^{\circ}$

Teledyne Relays CCR59Latching Switch


- Isolators used in test are good over 8-16 GHz range
- Size of the ripples is related to the VSWR of the switch as: $-10 * \log \left(1-|\rho|^{2}\right)$ where $\rho$ is the reflection coefficient
- Phase repeatability not shown but much better than $1^{\circ}$


## Affect of Reed Position on VSWR



Equivalent Circuits


## Electro-Mechanical Switches Compared to Solid State Switches

FET Switches

- FET switches seem to be good to $<6 \mathrm{GHz}$.
- SP4T configuration not seen

PIN Diode Switches

- PIN diode switches generate IMD products (worse at lower frequencies)
- Agilent version of SP4T costs roughly 3 times the cost of electromechanical switches.
- Unsure of repeatability of amplitude/phase switch cycle to switch cycle, as a function of power supply variations or temperature (would need to evaluate).

Solid State in general

- Unclear reliability of SS switches is superior to EM due to complexity of drive circuitry, etc.
- SS switches not readily compatible with the circular DC and Control connectors.
- Footprint of SS switches varies greatly from existing EM design.
- Electrical performance of SS switches inferior to EM switches.

Comparison of Switch Characteristics

| Parameter | Agilent P9404C (Absorptive) | Herley 9140-500 (Reflective) | Teledyne CR-59 (Latching) |
| :---: | :---: | :---: | :---: |
| Type | PI/N diode with drivers | PIN diode with drivers | Electro-mechanical |
| Frequency Range | $100 \mathrm{MHz}-18 \mathrm{GHz}$ | $1-18 \mathrm{GHz}$ | $\mathrm{DC}-26.5 \mathrm{GHz}$ |
| Insertion Loss | $\begin{aligned} & <3.5 \mathrm{~dB} @ 8 \mathrm{GHz} \\ & 4.5 \mathrm{~dB} @ 18 \mathrm{GHz} \end{aligned}$ | $\begin{aligned} & 1.5 \mathrm{~dB} @ 8 \mathrm{GHz} \\ & 2.8 \mathrm{~dB} @ 18 \mathrm{GHz} \end{aligned}$ | $\begin{aligned} & 40.2 \mathrm{~dB} @ 8 \mathrm{GHz} \\ & 40.3 \mathrm{~dB} @ 20 \mathrm{GHz} \end{aligned}$ |
| Isolation | $>80 \mathrm{~dB}$ | 50 dB | $\begin{aligned} & >80 \mathrm{~dB} @ 16 \mathrm{GHz} \\ & >75 \mathrm{~dB} @ 20 \mathrm{GHz} \\ & \hline \end{aligned}$ |
| VSWR | 1.92:1 max@ 18 GHz | 2.0-1 max@ 18 GHz | 1.20:1 max @ 20 GHz |
| Ripple from VSWR | 0.45 dB | 0.51 dB | 0.04 dB |
| Switching Speed | 450 ns typical | 250 ns max | 20 ms typical |
| DC Power | $\pm 5 \mathrm{~V} \mathrm{DC}$ | $+5 \mathrm{~V}_{\mathrm{r}}-12 \mathrm{~V}$ both DC | +28V DC |
| TTL Control | Yes | Yes | Yes |
| Price quantity 1 | \$1779 | unknown | \$843 |

## Latching versus Non-latching

- Non-latching switch requires power applied to the switch coil $100 \%$ of the time
- The location of the coils in the switch can and transient switching can cause transient thermal events to the RF body (assume the correlator can see this).
- Latching switches apply current to the coil only long enough to accomplish switching


## Stop beating the switches

(you can beat a Timex but don't beat a Rolex!)

- Treat the switch as the precision device that it is.

